Stanford University
Showing 51-100 of 1,566 Results
-
Laura Dahl
Senior Lecturer of Music
BioPianist Laura Dahl is an active international performer and educator, appearing in venues including Carnegie Hall, the Berlin Philharmonic, San Francisco’s Davies Symphony Hall and Stern Grove Festival, Bing Concert Hall at Stanford University, the Carmel Bach Festival, and the Henley Festival in Great Britain. A specialist in collaborative performance and chamber music, Dahl is the founder and artistic director of the Drs. Ben and A. Jess Shenson Recital Series at Stanford University, as well as Music by the Mountain, a chamber music festival in Northern California. Dahl is a Senior Lecturer in the Department of Music at Stanford University, where she teaches collaborative and solo piano, chamber music, art song interpretation, and diction. She has also taught at the New National Theatre Young Artists Training Program in Tokyo, Japan.
Dahl’s education featured training on both coasts of the US and in Germany. She was the first musician to be named a German Chancellor’s Scholar of the Alexander von Humboldt Foundation. She lived two years in Germany, studying under pianist Phillip Moll, baritone Dietrich Fischer-Dieskau, and pianist and composer Aribert Reimann. Dahl holds degrees from the University of Michigan School of Music and the New England Conservatory of Music, where she was a student of Martin Katz, Eckart Sellheim, and Margo Garrett. A graduate of San Francisco Opera’s Merola Program, Dahl served as Assistant Conductor for Western Opera Theater and was Associate Director of the San Francisco Boys Chorus. She has been a coach at the San Francisco Conservatory of Music, the New England Conservatory of Music and the University of Michigan Opera Theater. She was an invited fellow at the prestigious Tanglewood Music Center for two years, in addition to studies at the Banff Academy of Singing (Canada) and the Music Academy of the West (Santa Barbara, California). Dahl was born and raised in the western states of Colorado and Montana. -
Noel Dahl
Residential Programs Administrator, Stanford Introductory Studies Operations
Current Role at StanfordSIS Residential Program Administrator
ITALIC | SLE
Here's the thing--I work in SIS to support the ITALIC and SLE programs. My work falls under administrative operations--a catch-all that covers everything from student course registration each quarter, coordinating charter busses for field trips around the Bay Area, ordering materials and supplies, verifying financial transactions, designing minor collateral materials and posters, events planning, updating web content. It is an a amazing job and the people I get to work with are brilliant and fascinating individuals. -
Peter Dahlberg
Assistant Professor of Photon Science and of Structural Biology
BioPeter Dahlberg received his undergraduate degree at McGill University in 2011 and his Ph.D. in biophysics from the University of Chicago in 2016. He then came to Stanford to work with W. E. Moerner and Wah Chiu to develop correlative light and electron microscopy methods. These methods give highly specific information on the machines that fill cells and make them work. In 2021 he was awarded SLAC’s Panofsky Fellowship to continue his work on correlative microscopy. In 2023 he transitioned to a Staff Scientist role at SLAC. See the group website below for more information.
-
Erpeng Dai
Instructor, Radiology
BioDr. Erpeng Dai's research interest is focused on advanced neuro MRI technique development and application. Previously, he has developed a series of novel techniques for high-resolution and fast diffusion MRI (dMRI). Currently, he is mainly working on distortion-free dMRI, advanced diffusion encoding, and brain microstructure and connectivity studies.
-
Hongjie Dai
The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus
BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.
Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.
The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.
Nanomaterials
The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.
Nanoscale Physics and Electronics
High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.
Nanomedicine and NIR-II Imaging
Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.
Electrocatalysis and Batteries
The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science. -
Xianjin Dai, PhD, DABR
Clinical Assistant Professor, Radiation Oncology - Radiation Physics
Current Research and Scholarly InterestsAI in Medicine
Medical Image Analysis
Biomedical Physics
Multimodal Imaging
Ultrasound Imaging
Medical Device
Biomedical Optics (Optical, Photoacoustic, OCT) -
Yuqin Dai
Director of Metabolomics
BioDr. Yuqin Dai is the Director of Metabolomics at Stanford ChEM-H. In this role, she collaborates with faculty in the development and execution of experiments aimed at measuring small molecule drug candidates, endogenous and exogenous metabolites in a variety of biomedical R&D contexts. In addition, she provides strategic vision, mentorship, and leadership in the development of new LC/MS analytical methodologies for metabolomics research, the Metabolomics Knowledge Center’s daily operation and growth.
Dr. Dai came to ChEM-H with 20 years of research, marketing and managerial experiences across biotech/pharma and analytical instrument industries. Prior to joining ChEM-H in January of 2020, Dr. Dai worked at Agilent managing strategic collaborations with key opinion leaders in academia and industry for metabolomics research, driving new application marketing opportunities, and developing differential solutions to support new LC/MS and automation product introductions. Before Agilent, Dr. Dai led bioanalytical R&D teams and managed DMPK projects to support drug discovery and development programs at three biotech/pharm companies. She was also extensively involved in new technology assessment and implementation. Dr. Dai received her Ph.D. in analytical chemistry from the University of Alberta, Canada, where her research focused on the LC/MS and MALDI/MS instrumentation and method development for proteomics and small molecule applications. -
Melody Dailey
Stanford Student Employee, Biology
Undergraduate, Vice Provost for Undergraduate EducationBioMelody is currently a candidate for a Bachelor of Science degree in Human Biology with a concentration in Neuroengineering and Computation. She intends to pursue graduate studies culminating in a Master’s and Ph.D. in Biomedical Engineering, alongside a Doctor of Medicine degree specializing in Neurology. Her academic and research interests lie at the intersection of biology, engineering, and clinical neuroscience, with a focus on advancing translational innovations to address neurological disorders.
-
Gretchen C. Daily
Bing Professor of Environmental Science and Senior Fellow at the Woods Institute for the Environment and, by courtesy, at the Freeman Spogli Institute for International Studies
Current Research and Scholarly InterestsLand use, biodiversity dynamics, ecosystem services
-
Michael D. Dake
Thelma and Henry Doelger Professor of Cardiovascular Surgery, Emeritus
Current Research and Scholarly InterestsImproved endovascular procedures and devices to treat aortic lesions, peripheral arterial disease and venous abnormalities. Focused interest in drug-eluting stents and balloons, endovascular stent-grafts, including branched aortic devices and techniques for the endovascular management of aortic dissection. Current clinical research projects include drug-eluting stents for superficial femoral arterial disease and multiple device trials to evaluate stent-grafts for the treatment of aortic lesions.
-
Georgi L. Dakovski
Lead Scientist, SLAC National Accelerator Laboratory
Current Role at StanfordSince ~2016 I have been involved in the design, construction and commissioning of new instrumentation at the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory, aiming at developing novel time-resolved soft x-ray scattering methods. Currently I am the Instrument Lead for the qRIXS experimental endstation, which focuses on performing resonant inelastic x-ray experiment to study ultrafast dynamics in correlated electron systems.
-
Athanasia Dalakoura
Undergraduate, Vice Provost for Undergraduate Education
BioIncoming freshman at Stanford University
-
Heike Daldrup-Link
Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)
Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.