Bio-X
Showing 1-50 of 70 Results
-
Stephen J. Galli, MD
Mary Hewitt Loveless, MD, Professor in the School of Medicine and Professor of Pathology and of Microbiology and Immunology
On Partial Leave from 10/01/2024 To 12/05/2024Current Research and Scholarly InterestsThe goals of Dr. Galli's laboratory are to understand the regulation of mast cell and basophil development and function, and to develop and use genetic approaches to elucidate the roles of these cells in health and disease. We study both the roles of mast cells, basophils, and IgE in normal physiology and host defense, e.g., in responses to parasites and in enhancing resistance to venoms, and also their roles in pathology, e.g., anaphylaxis, food allergy, and asthma, both in mice and humans.
-
Sanjiv Sam Gambhir, MD, PhD
Member, Bio-X
Current Research and Scholarly InterestsMy laboratory focuses on merging advances in molecular biology with those in biomedical imaging to advance the field of molecular imaging. Imaging for the purpose of better understanding cancer biology and applications in gene and cell therapy, as well as immunotherapy are all being studied. A key long-term focus is the earlier detection of cancer by combining in vitro diagnostics and molecular imaging.
-
Surya Ganguli
Associate Professor of Applied Physics, Senior Fellow at the Stanford Institute for HAI and Associate Professor, by courtesy, of Neurobiology and of Electrical Engineering
Current Research and Scholarly InterestsTheoretical / computational neuroscience
-
Alex Gao
Assistant Professor of Biochemistry
Current Research and Scholarly InterestsNature has created many powerful biomolecules that are hidden in organisms across kingdoms of life. Many of these biomolecules originate from microbes, which contain the most diverse gene pool among living organisms. We are integrating high-throughput computational and experimental approaches to harness the vast diversity of genes in microbes to develop new antibiotics and molecular biotechnology, and to investigate the evolution of proteins and molecular mechanisms in innate immunity.
-
Xiaojing Gao
Assistant Professor of Chemical Engineering
Current Research and Scholarly InterestsHow do we design biological systems as “smart medicine” that sense patients’ states, process the information, and respond accordingly? To realize this vision, we will tackle fundamental challenges across different levels of complexity, such as (1) protein components that minimize their crosstalk with human cells and immunogenicity, (2) biomolecular circuits that function robustly in different cells and are easy to deliver, (3) multicellular consortia that communicate through scalable channels, and (4) therapeutic modules that interface with physiological inputs/outputs. Our engineering targets include biomolecules, molecular circuits, viruses, and cells, and our approach combines quantitative experimental analysis with computational simulation. The molecular tools we build will be applied to diverse fields such as neurobiology and cancer therapy.
-
Alan M. Garber
Henry J. Kaiser Jr. Professor and Professor of Medicine, Emeritus
Current Research and Scholarly InterestsTopics in the health economics of aging; health, insurance; optimal screening intervals; cost-effectiveness of, coronary surgery in the elderly; health care financing and delivery, in the United States and Japan; coronary heart disease
-
Chris Garcia
Younger Family Professor and Professor of Structural Biology
Current Research and Scholarly InterestsStructural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.
-
Justin Gardner
Associate Professor of Psychology
Current Research and Scholarly InterestsHow does neural activity in the human cortex create our sense of visual perception? We use a combination of functional magnetic resonance imaging, computational modeling and analysis, and psychophysical measurements to link human perception to cortical brain activity.
-
Joseph Garner
Professor of Comparative Medicine and, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsThe medical research community has long recognized that "good well-being is good science". The lab uses an integrated interdisciplinary approach to explore this interface, while providing tangible deliverables for the well-being of human patients and research animals.
-
Matthias Garten
Assistant Professor of Microbiology and of Bioengineering
BioMatthias Garten, Ph.D., is an assistant professor in the department of Immunology and Microbiology and the department of Bioengineering. He is a membrane biophysicist who is driven by the question of how the malaria parasite interfaces with its host-red blood cell, how we can use the unique mechanisms of the parasite to treat malaria and to re-engineer cells for biomedical applications.
He obtained a physics master's degree from the Dresden University of Technology, Germany with a thesis in the laboratory of Dr. Petra Schwille and his Ph.D. life sciences from the University Paris Diderot, France through his work in the lab of Dr. Patricia Bassereau (Insitut Curie) investigating electrical properties of lipid membranes and protein - membrane interactions using biomimetic model systems, giant liposomes and planar lipid membranes.
In his post-doctoral work at the National Institutes of Health, Bethesda in the laboratory of Dr. Joshua Zimmerberg, he used molecular, biophysical and quantitative approaches to research the malaria parasite. His work led to the discovery of structure-function relationships that govern the host cell – parasite interface, opening research avenues to understand how the parasite connects to and controls its host cell. -
Brice Gaudilliere
Associate Professor of Anesthesiology, Perioperative and Pain Medicine (MSD) and, by courtesy, of Pediatrics (Neonatology)
Current Research and Scholarly InterestsThe advent of high dimensional flow cytometry has revolutionized our ability to study and visualize the human immune system. Our group combines high parameter mass cytometry (a.k.a Cytometry by Time of Flight Mass Spectrometry, CyTOF), with advanced bio-computational methods to study how the human immune system responds and adapts to acute physiological perturbations. The laboratory currently focuses on two clinical scenarios: surgical trauma and pregnancy.
-
Charles Gawad
Associate Professor of Pediatrics (Hematology/Oncology)
BioOur lab works at the interface of biotechnology, computational biology, cellular biology, and clinical medicine to develop and apply new tools for characterizing genetic variation across single cells within a tissue with unparalleled sensitivity and accuracy. We are focused on applying these technologies to study cancer clonal evolution while patients are undergoing treatment with the aim of identifying cancer clonotypes that are associated with resistance to specific drugs so as to better understand and predict treatment response. We are also applying these methods to understand how more virulent pathogens emerge from a population of bacteria or viruses with an emphasis on developing a deeper understanding of how antibiotic resistance develops.
-
Pascal Geldsetzer
Assistant Professor of Medicine (Primary Care and Population Health) and, by courtesy, of Epidemiology and Population Health
BioPascal Geldsetzer is an Assistant Professor of Medicine in the Division of Primary Care and Population Health and, by courtesy, in the Department of Epidemiology and Population Health. He is also affiliated with the Department of Biomedical Data Science, Department of Health Policy, King Center for Global Development, and the Stanford Centers for Population Health Sciences, Innovation in Global Health, and Artificial Intelligence in Medicine & Imaging.
His research focuses on identifying and evaluating the most effective interventions for improving health at older ages. In addition to leading several randomized trials, his methodological emphasis lies on the use of quasi-experimental approaches to ascertain causal effects in large observational datasets, particularly in electronic health record data. He has won an NIH New Innovator Award (in 2022), a Chan Zuckerberg Biohub investigatorship (in 2022), and two NIH R01 grants as Principal Investigator (both in 2023). -
Andrew Gentles
Associate Professor (Research) of Pathology and of Medicine (BMIR)
Current Research and Scholarly InterestsComputational systems biology
-
Paul George, MD, PhD
Associate Professor of Neurology and Neurological Sciences (Adult Neurology) and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.
BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.
APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes. -
Margot Gerritsen
Professor of Energy Resources Engineering, Emerita
Current Research and Scholarly InterestsResearch
My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.
Teaching
I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.
Professional Activities
Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS -
Olivier Gevaert
Associate Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science
Current Research and Scholarly InterestsMy lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.
-
Amato J. Giaccia
Jack, Lulu and Sam Willson Professor, Professor of Radiation Oncology, Emeritus
Current Research and Scholarly InterestsDuring the last five years, we have identified several small molecules that kill VHL deficient renal cancer cells through a synthetic lethal screening approach. Another major interest of my laboratory is in identifying hypoxia-induced genes involved in invasion and metastases. We are also investigating how hypoxia regulates gene expression epigenetically.
-
William Giardino
Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)
Current Research and Scholarly InterestsWe aim to decipher the neural mechanisms underlying psychiatric conditions of stress, addiction, and sleep/circadian dysregulation. Our work uses combinatorial technologies for precisely mapping, monitoring, and manipulating neural circuits that regulate emotional states. We are especially focused on the behavioral functions of neuropeptide molecules acting throughout the circuitry of the extended amygdala- particularly in a brain region called the bed nucleus of the stria terminalis (BNST).
-
Erin Gibson
Assistant Professor of Psychiatry and Behavioral Sciences (Sleep Medicine)
Current Research and Scholarly InterestsGlia make up more than half of the cells in the human brain, but we are just beginning to understand the complex and multifactorial role glia play in health and disease. Glia are decidedly dynamic in form and function. Understanding the mechanisms underlying this dynamic nature of glia is imperative to developing novel therapeutic strategies for diseases of the nervous system that involve aberrant gliogenesis, especially related to changes in myelination.
-
Rona Giffard
Professor of Anesthesiology, Perioperative and Pain Medicine, Emerita
Current Research and Scholarly InterestsAstrocytes, microglia and neurons interact, and have unique vulnerabilities to injury based on their patterns of gene expression and their functional roles. We focus on the cellular and molecular basis of brain cell injury in stroke. We study the effects of altering miRNA expression, altering levels of heat shock and cell death regulatory proteins. Our goal is to improve outcome by improving mitochondrial function and brain cell survival, and reducing oxidative stress and inflammation.
-
William Gilly
Professor of Oceans
Current Research and Scholarly InterestsMy work has contributed to understanding electrical excitability in nerve & muscle in organisms ranging from brittle-stars to mammals. Current research addresses behavior, physiology and ecology of squid through field and lab approaches. Electronic tagging plus in situ video, acoustic and oceanographic methods are used to study behaviors and life history in the field. Lab work focuses on control of chromogenic behavior by the chromatophore network and of locomotion by the giant axon system.
-
Lisa Giocomo
Professor of Neurobiology
Current Research and Scholarly InterestsMy laboratory studies the cellular and molecular mechanisms underlying the organization of cortical circuits important for spatial navigation and memory. We are particularly focused on medial entorhinal cortex, where many neurons fire in spatially specific patterns and thus offer a measurable output for molecular manipulations. We combine electrophysiology, genetic approaches and behavioral paradigms to unravel the mechanisms and behavioral relevance of non-sensory cortical organization. Our first line of research is focused on determining the cellular and molecular components crucial to the neural representation of external space by functionally defined cell types in entorhinal cortex (grid, border and head direction cells). We plan to use specific targeting of ion channels, combined with in vivo tetrode recordings, to determine how channel dynamics influence the neural representation of space in the behaving animal. A second, parallel line of research, utilizes a combination of in vivo and in vitro methods to further parse out ionic expression patterns in entorhinal cortices and determine how gradients in ion channels develop. Ultimately, our work aims to understand the ontogenesis and relevance of medial entorhinal cortical topography in spatial memory and navigation.
-
Nicholas Giori MD, PhD
Professor of Orthopaedic Surgery
Current Research and Scholarly InterestsOsteoarthritis
Medical Device Development -
Aaron D. Gitler
Stanford Medicine Basic Science Professor
Current Research and Scholarly InterestsWe investigate the mechanisms of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and ALS. We don't limit ourselves to one model system or experimental approach. We start with yeast, perform genetic and chemical screens, and then move to other model systems (e.g. mammalian tissue culture, mouse, fly) and even work with human patient samples (tissue sections, patient-derived cells, including iPS cells) and next generation sequencing approaches.
-
Linda Giudice
Stanley McCormick Memorial Professor in the School of Medicine, Emerita
Current Research and Scholarly InterestsOur research is in reproductive endocrinology and reproductive genomics. It focuses on human endometrial biology as it relates to basic biological mechanisms underlying steroid hormone action in this tissue, normal and abnormal placenta-decidua interactions, mechanisms underlying placentation and abnormal fetal growth, endometrial stem cells, and functional genomics for diagnostics and therapeutics of endometrial disorders. We also study mechanisms underlying ovarian follicle steroidogenesis.
-
Jeffrey S. Glenn, M.D., Ph.D.
Joseph D. Grant Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsDr. Glenn's primary interest is in molecular virology, with a strong emphasis on translating this knowledge into novel antiviral therapies. Other interests include exploitation of hepatic stem cells, engineered human liver tissues, liver cancer, and new biodefense antiviral strategies.
-
Gary Glover
Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Psychology and of Electrical Engineering
Current Research and Scholarly InterestsMy present research is devoted to the advancement of functional magnetic resonance imaging sciences for applications in basic understanding of the brain in health and disease. We collaborate closely with departmental clinicians and with others in the school of medicine, humanities, and the engineering sciences.
-
Anna L Gloyn
Professor of Pediatrics (Endocrinology) and of Genetics
Current Research and Scholarly InterestsAnna's current research projects are focused on the translation of genetic association signals for type 2 diabetes and glycaemic traits into cellular and molecular mechanisms for beta-cell dysfunction and diabetes. Her group uses a variety of complementary approaches, including human genetics, functional genomics, physiology and islet-biology to dissect out the molecular mechanisms driving disease pathogenesis.
-
Ashish Goel
Professor of Management Science and Engineering and, by courtesy, of Computer Science
BioAshish Goel is a Professor of Management Science and Engineering and (by courtesy) Computer Science at Stanford University. He received his PhD in Computer Science from Stanford in 1999, and was an Assistant Professor of Computer Science at the University of Southern California from 1999 to 2002. His research interests lie in the design, analysis, and applications of algorithms.
-
Lauren Goins
Assistant Professor of Developmental Biology
Current Research and Scholarly InterestsThe Goins lab aims to understand how cells make decisions. Our research focuses on how young, immature blood stem cells, with the potential to become many different cell types, choose between these cell fates.
-
Garry Gold
Stanford Medicine Professor of Radiology and Biomedical Imaging
Current Research and Scholarly InterestsMy primary focus is application of new MR imaging technology to musculoskeletal problems. Current projects include: Rapid MRI for Osteoarthritis, Weight-bearing cartilage imaging with MRI, and MRI-based models of muscle. We are studying the application of new MR imaging techniques such as rapid imaging, real-time imaging, and short echo time imaging to learn more about biomechanics and pathology of bones and joints. I am also interested in functional imaging approaches using PET-MRI.
-
Jeffrey Goldberg, MD, PhD
Blumenkranz Smead Professor
Current Research and Scholarly InterestsLab research on molecular mechanisms of survival and regeneration in the visual system; retinal development and stem cell biology; nanoparticles and tissue engineering. Clinical trials in imaging, biomarker development, and neuroprotection and vision restoration in glaucoma and other neurodegenerative diseases.
-
Mary Kane Goldstein
Professor of Health Policy, Emerita
Current Research and Scholarly InterestsHealth services research in primary care and geriatrics: developing, implementing, and evaluating methods for clinical quality improvement. Current work includes applying health information technology to quality improvement through clinical decision support (CDS) integrated with electronic health records; encoding clinical knowledge into computable formats in automated knowledge bases; natural language processing of free text in electronic health records; analyzing multiple comorbidities
-
Andrea Goldstein-Piekarski
Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)
BioDr. Goldstein-Piekarski directs the Computational Psychiatry, Neuroscience, and Sleep Laboratory (CoPsyN Sleep Lab) as an Assistant Professor in the Department of Psychiatry and Behavioral Sciences at Stanford University School of Medicine and PI within the Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC) at the Palo Alto VA. She received her PhD in 2014 at the University of California, Berkeley where she studied the consequences of sleep on emotional brain function. She then completed a Postdoctoral fellowship at Stanford focusing on understanding the brain basis of anxiety and depression.
As the director of the CoPsyN Sleep Lab she is developing a translational, interdisciplinary research program that combines human neuroimaging, high-density EEG sleep recording, and computational modeling to understand the neural mechanisms through which sleep disruption contributes to affective disorders, particularly depression, across the lifespan. The ultimate goals of this research are to (1) develop mechanistically-informed interventions that directly target aspects of sleep and brain function to prevent and treat affective disorders and (2) identify novel biomarkers which can identify which individuals are most likely to experience improved mood following targeted sleep interventions.
This work is currently supported by The KLS Foundation, a R01 from National Institute of Mental Health, and a R61 from the National Institute of Mental Health. -
Natalia Gomez-Ospina
Assistant Professor of Pediatrics (Genetics) and of Pediatrics (Stem Cell Transplantation)
Current Research and Scholarly InterestsDr. Gomez-Ospina is a physician scientist and medical geneticist with a strong interest in the diagnosis and management of genetic diseases.
1) Lysosomal storage diseases:
Her research program is on developing better therapies for a large class of neurodegenerative diseases in children known as lysosomal storage disorders. Her current focus is on developing genome editing of hematopoietic stem cells as a therapeutic approach for these diseases beginning with Mucopolysaccharidosis type 1 and Gaucher disease. She established a genetic approach where therapeutic proteins can be targeted to a single well-characterized place in the genome known as a safe harbor. This approach constitutes a flexible, “one size fits all” approach that is independent of specific genes and mutations. This strategy, in which the hematopoietic system is commandeered to express and deliver therapeutic proteins to the brain can potentially change the current approaches to treating childhood neurodegenerative diseases and pave the way for alternative therapies for adult neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease
2) Point of care ammonia testing
She also works in collaboration with other researchers at Stanford to develop point-of-care testing for serum ammonia levels. Such device will greatly improve the quality of life of children and families with metabolic disorders with hyperammonemia.
3) Gene discovery
Dr Gomez-Ospina lead a multi-institutional collaboration resulting in the discovery of a novel genetic cause of neonatal and infantile cholestatic liver disease. She collaborated in the description of two novel neurologic syndromes caused by mutations in DYRK1 and CHD4.
For more information go to our website:
https://www.gomezospina.com/ -
Benjamin Good
Assistant Professor of Applied Physics
BioBenjamin Good is a theoretical biophysicist with a background in experimental evolution and population genetics. He is interested in the short-term evolutionary dynamics that emerge in rapidly evolving microbial populations like the gut microbiome. Technological advances are revolutionizing our ability to peer into these evolving ecosystems, providing us with an increasingly detailed catalog of their component species, genes, and pathways. Yet a vast gap still remains in understanding the population-level processes that control their emergent structure and function. Our group uses tools from statistical physics, population genetics, and computational biology to understand how microscopic growth processes and genome dynamics at the single cell level give rise to the collective behaviors that can be observed at the population level. Projects range from basic theoretical investigations of non-equilibrium processes in microbial evolution and ecology, to the development of new computational tools for measuring these processes in situ in both natural and experimental microbial communities. Through these specific examples, we seek to uncover unifying theoretical principles that could help us understand, forecast, and eventually control the ecological and evolutionary dynamics that take place in these diverse scenarios.
-
Miriam B. Goodman
Mrs. George A. Winzer Professor of Cell Biology
Current Research and Scholarly InterestsWe study the molecular events that give rise to the sensation of touch and chemical stressors that compromise touch sensation in C. elegans. To do this, we use a combination of quantitative behavioral analysis, genetics, in vivo electrophysiology, and heterologous expression of ion channels. We collaborate with physicists and other physiologist to expand our experimental research.
-
Stuart Goodman, MD, PhD
The Robert L. and Mary Ellenburg Professor of Surgery and Professor, by courtesy, of Bioengineering
On Partial Leave from 09/01/2024 To 08/31/2025Current Research and Scholarly InterestsAs an academic orthopaedic surgeon, my interests center on adult reconstructive surgery, arthritis surgery, joint replacement, biomaterials, biocompatibility, tissue engineering, mesenchymal stem cells. Collaborative clinical, applied and basic research studies are ongoing.
-
Kenneth Goodson
Senior Associate Dean for Research and Faculty Affairs, Davies Family Provostial Professor, and Professor, by courtesy, of Materials Science and Engineering
Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.
-
William Rowland Goodyer, MD/PhD
Assistant Professor of Pediatrics (Cardiology)
BioDr. Goodyer is a physician scientist who specializes in Pediatric Cardiology and Electrophysiology. Will graduated from McGill University (Montreal, Canada) with a BSc in Biology prior to completing his graduate studies at Stanford University in the Medical Scientist Training Program (MSTP). He subsequently completed residency training in Pediatrics at Boston Children’s Hospital before returning to Stanford to complete a fellowship in Pediatric Cardiology and advanced fellowship in Pediatric Electrophysiology. He additionally performed a postdoctoral fellowship in the Sean Wu laboratory at the Stanford Cardiovascular Institute where he developed the first comprehensive single-cell gene atlas of the entire murine cardiac conduction system (CCS) as well as pioneered the generation of optical imaging agents for the real-time visualization of the CCS to help prevent accidental surgical damage during heart surgeries. Will's lab (www.goodyerlab.com) focuses on basic science advances aimed at the improved diagnosis and treatment of cardiac arrhythmias.
-
Deborah M Gordon
Professor of Biology
Current Research and Scholarly InterestsProfessor Deborah M Gordon studies the evolutionary ecology of collective behavior. Ant colonies operate without central control, using local interactions to regulate colony behavior.
-
Jorg Goronzy
Professor of Medicine (Immunology and Rheumatology), Emeritus
Current Research and Scholarly InterestsT cell homeostasis and function with age
-
Ian Gotlib
David Starr Jordan Professor
Current Research and Scholarly InterestsCurrent interests include social, cognitive, and biological factors in affective disorders; neural and cognitive processing of emotional stimuli and reward by depressed persons; behavioral activation and anhedonia in depression; social, emotional, and biological risk factors for depression in children.
-
Or Gozani
Dr. Morris Herzstein Professor
Current Research and Scholarly InterestsWe study the molecular mechanisms by which chromatin-signaling networks effect nuclear and epigenetic programs, and how dysregulation of these pathways leads to disease. Our work centers on the biology of lysine methylation, a principal chromatin-regulatory mechanism that directs epigenetic processes. We study how lysine methylation events are generated, sensed, and transduced, and how these chemical marks integrate with other nuclear signaling systems to govern diverse cellular functions.
-
Edward Graves
Associate Professor of Radiation Oncology (Radiation Physics) and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsApplications of molecular imaging in radiation therapy, development of hypoxia and radiosensitivity imaging techniques, small animal image-guided conformal radiotherapy, image processing and analysis.