Bio-X
Showing 951-1,000 of 1,059 Results
-
Hawa Racine Thiam
Assistant Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsCellular Biophysical Mechanisms of Innate Immune Cells Functions
-
Robert Tibshirani
Professor of Biomedical Data Science and of Statistics
Current Research and Scholarly InterestsMy research is in applied statistics and biostatistics. I specialize in computer-intensive methods for regression and classification, bootstrap, cross-validation and statistical inference, and signal and image analysis for medical diagnosis.
-
Alice Ting
Professor of Genetics, of Biology and, by courtesy, of Chemistry
Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from protein engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational design.
-
Natalie Torok
Professor of Medicine (Gastroenterology and Hepatology)
On Leave from 10/01/2024 To 12/28/2024Current Research and Scholarly InterestsOur lab is focused on exploring the role of matrix remodeling in disease progression in metabolic dysfunction steatohepatitis (MASH)-related hepatocellular carcinoma and primary sclerosing cholangitis. Our goal is to uncover how biomechanical characteristics of the ECM affect mechano-sensation, and how these pathways could ultimately be targeted. We are also interested in aging and its effects on metabolic pathways in MASH and HCC.
-
Philip S. Tsao, PhD
Professor (Research) of Medicine (Cardiovascular Medicine)
Current Research and Scholarly InterestsOur primary interests are in the molecular underpinnings of vascular disease as well as assessing disease risk. In addition to targeted investigation of specific signaling molecules, we utilize global genomic analysis to identify gene expression networks and regulatory units. We are particularly interested in the role of microRNAs in gene expression pathways associated with disease.
-
Richard Tsien
George D. Smith Professor, Emeritus
Current Research and Scholarly InterestsWe study synaptic communication between brain cells with the goal of understanding neuronal computations and memory mechanisms. Main areas of focus include: presynaptic calcium channels, mechanisms of vesicular fusion and recycling. Modulation of synaptic strength through changes in postsynaptic receptors and dendritic morphology. Signaling that links synaptic activity to nuclear transcription and local protein translation. Techniques include imaging, electrophysiology, molecular biology.
-
Jason Tucciarone, MD, PhD
Assistant Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology)
BioJason Tucciarone MD, PhD is an Assistant Professor with Stanford School of Medicine’s Department of Psychiatry and Behavioral Sciences. As a neuroscientist, he leads a lab interested in biological mechanisms of mental illness and investigating new therapies for mood disorders and addiction. In particular, he is defining new cell types and evolutionary conserved circuits in emotional processing centers of the brain, with the hope of finding new entry points for novel therapeutics. Working with Dr Robert Malenka, he is using optogenetic, chemogenetic, neuroimaging and behavioral approaches in mouse models of addiction to uncover vulnerable brain circuitry in opioid use disorder. Alongside Dr Alan Schatzberg, he is investigating the efficacy of buprenorphine augmentation to IV ketamine infusion at reducing suicidality in treatment resistant depression.
Clinically, he works collaboratively in the department’s Neuropsychiatry clinic and his clinical focus includes treating patients with diverse and complex presentations at the interface of psychiatry and neurology with particular interest in functional neurological disorders. He sees a small cohort of psychotherapy patients in Individual Psychotherapy Clinic. He also works weekend shifts on Stanford’s inpatient psychiatry units.
Prior to training in psychiatry at Stanford’s research residency track Jason received his bachelor’s degree in biology and philosophy from Union College. He spent three years as a Post-Baccalaureate IRTA fellow at the National Institute of Neurological Disorders and Stroke investigating and developing MRI reportable contrast agents to map neuronal connectivity. Following this he entered the Medical Scientist Training Program (MD/PhD) at the State University of NY Stony Brook University. There he completed a doctoral dissertation in neuroscience under the mentorship Dr. Josh Huang at Cold Spring Harbor Laboratory. His thesis work employed mouse genetic dissections of excitatory and inhibitory cortical circuits with a focus on the circuitry of chandelier inhibitory interneurons in prefrontal cortex.
In addition to his research and clinical work, Jason is passionate about teaching, mentorship, and resident clinical supervision. He joined a working group early in his clinical residency to restructure trainee’s neuroscience education. He teaches introductory lectures in the neuroscience of addiction, PTSD, psychosis, and mood disorders. He also leads resident group supervision in their introductory psychodynamic psychotherapy clinical experience. He supervises medical students, residents, and clinical fellows in Neuropsychiatry clinic. Finally, committed to the Stanford clinical community, he leads a support group for Internal Medicine interns and residents. -
Shripad Tuljapurkar
The Dean and Virginia Morrison Professor of Population Studies
Current Research and Scholarly InterestsStochastic dynamics of human and natural populations; prehistoric societies; probability forecasts including sex ratios, mortality, aging and fiscal balance; life history evolution.
-
Minang (Mintu) Turakhia
Clinical Professor, Medicine
Current Research and Scholarly InterestsDr. Turakhia has an active clinical research program, with funding from AHA, VA, NIH, the medical device industry, and foundations. His research program aims to improve the treatment of heart rhythm disorders, with an emphasis on atrial fibrillation, by evaluating quality and variation of care, comparative and cost-effectiveness of therapies, and risk prediction. Dr. Turakhia has extensive expertise in using large administrative and claims databases for this work. His TREAT-AF retrospective study of over 500,000 patients with newly-diagnosed AF is the largest known research cohort of AF patients. He has served as study PI or chairman of several prominent single- and multicenter trials in atrial fibrillation, investigational devices for electrophysiology procedures, digital health interventions, and sensor technologies.
His other research interests include technology assessment of new device-based therapies and the impact of changing health policy and reform on the delivery of arrhythmia care. Dr. Turakhia is a Fellow of the American Heart Association, American College of Cardiology, and Heart Rhythm Society. -
Madeleine Udell
Assistant Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsProfessor Udell develops new techniques to accelerate and automate data science,
with a focus on large-scale optimization and on data preprocessing,
and with applications in medical informatics, engineering system design, and automated machine learning. -
Alexander Eckehart Urban
Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and of Genetics
Current Research and Scholarly InterestsComplex behavioral and neuropsychiatric phenotypes often have a strong genetic component. This genetic component is often extremely complex and difficult to dissect. The current revolution in genome technology means that we can avail ourselves to tools that make it possible for the first time to begin understanding the complex genetic and epigenetic interactions at the basis of the human mind.
-
PJ Utz
Professor of Medicine (Immunology and Rheumatology)
Current Research and Scholarly InterestsThe long-term research goal of the Utz laboratory is to understand autoimmunity, autoantibodies, and how tolerance is broken and can be reestablished.
-
Tulio Valdez, MD, MSc
Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics
BioDr. Tulio A Valdez is a surgeon scientist born and raised in Colombia with a subspecialty interest in Pediatric Otolaryngology. He attended medical school at Universidad Javeriana in Bogota Colombia before undertaking his residency in Otolaryngology, Head and Neck Surgery in Boston. He completed his Pediatric Otolaryngology Fellowship at Texas Children’s Hospital (2007), Houston and obtained his Master’s in Clinical and Translational Research at the University of Connecticut.
Clinically, Dr. Valdez has an interest in pediatric sleep apnea. He has a special interest in the management of sinus disease in cystic fibrosis. Dr. Valdez has co-authored one textbook and numerous book chapters and scientific manuscripts. Dr. Valdez continues his clinical research in these areas, particularly with a focus on aerodigestive disorders.
Scientifically, Dr. Valdez has developed various imaging methods to diagnose otitis media and cholesteatoma a middle ear condition that can lead to hearing loss. He was part of the Laser Biomedical Research Center at the Massachusetts Institute of Technology. His research includes novel imaging modalities to better diagnose ear infections one of the most common pediatric problems. His research has now expanded to include better intraoperative imaging modalities in pediatric patients to improve surgical outcomes without the need for radiation exposure.
Dr. Valdez believes in multi-disciplinary collaborations to tackle medical problems and has co-invented various medical devices and surgical simulation models. -
Gregory Valiant
Associate Professor of Computer Science
Current Research and Scholarly InterestsMy primary research interests lie at the intersection of algorithms, learning, applied probability, and statistics. I am particularly interested in understanding the algorithmic and information theoretic possibilities and limitations for many fundamental information extraction tasks that underly real-world machine learning and data-centric applications.
-
Matt van de Rijn
Sabine Kohler, MD, Professor of Pathology, Emeritus
Current Research and Scholarly InterestsOur research focuses on molecular analysis of human soft tissue tumors (sarcomas) with an emphasis on leiomyosarcoma and desmoid tumors. In addition we study the role of macrophages in range of malignant tumors.
-
Capucine Van Rechem
Assistant Professor of Pathology (Pathology Research)
Current Research and Scholarly InterestsMy long-term interest lies in understanding the impact chromatin modifiers have on disease development and progression so that more optimal therapeutic opportunities can be achieved. My laboratory explores the direct molecular impact of chromatin-modifying enzymes during cell cycle progression, and characterizes the unappreciated and unconventional roles that these chromatin factors have on cytoplasmic function such as protein synthesis.
-
Benjamin Van Roy
Professor of Electrical Engineering, of Management Science and Engineering and, by courtesy, of Computer Science
BioBenjamin Van Roy is a Professor at Stanford University, where he has served on the faculty since 1998. His current research focuses on reinforcement learning. Beyond academia, he leads a DeepMind Research team in Mountain View, and has also led research programs at Unica (acquired by IBM), Enuvis (acquired by SiRF), and Morgan Stanley.
He is a Fellow of INFORMS and IEEE and has served on the editorial boards of Machine Learning, Mathematics of Operations Research, for which he co-edited the Learning Theory Area, Operations Research, for which he edited the Financial Engineering Area, and the INFORMS Journal on Optimization. He received the SB in Computer Science and Engineering and the SM and PhD in Electrical Engineering and Computer Science, all from MIT, where his doctoral research was advised by John N. Tstitsiklis. He has been a recipient of the MIT George C. Newton Undergraduate Laboratory Project Award, the MIT Morris J. Levin Memorial Master's Thesis Award, the MIT George M. Sprowls Doctoral Dissertation Award, the National Science Foundation CAREER Award, the Stanford Tau Beta Pi Award for Excellence in Undergraduate Teaching, the Management Science and Engineering Department's Graduate Teaching Award, and the Lanchester Prize. He was the plenary speaker at the 2019 Allerton Conference on Communications, Control, and Computing. He has held visiting positions as the Wolfgang and Helga Gaul Visiting Professor at the University of Karlsruhe, the Chin Sophonpanich Foundation Professor and the InTouch Professor at Chulalongkorn University, a Visiting Professor at the National University of Singapore, and a Visiting Professor at the Chinese University of Hong Kong, Shenzhen. -
Shreyas Vasanawala, MD/PhD
William R. Brody Professor of Pediatric Radiology and Child Health
Current Research and Scholarly InterestsOur group is focused on developing new fast and quantitative MRI techniques.
-
Anand Veeravagu, MD, FAANS, FACS
Associate Professor of Neurosurgery and, by courtesy, of Orthopaedic Surgery
Current Research and Scholarly InterestsThe focus of my laboratory is to utilize precision medicine techniques to improve the diagnosis and treatment of neurologic conditions. From traumatic brain injury to spinal scoliosis, the ability to capture detailed data regarding clinical symptoms and treatment outcomes has empowered us to do better for patients. Utilize data to do better for patients, that’s what we do.
Stanford Neurosurgical Ai and Machine Learning Lab
http://med.stanford.edu/neurosurgery/research/AILab.html -
Alexander Michael Vezeridis, MD, PhD
Assistant Professor of Radiology (Interventional Radiology)
BioAlexander Vezeridis MD, PhD is an Assistant Professor of Radiology at Stanford University School of Medicine, and a physician-scientist specializing in Interventional Radiology. His clinical expertise includes interventional oncology, biliary disease and endoscopy, venous disease, portal hypertension, urologic interventions, women’s and men’s health interventions, and general vascular/interventional radiology.
Dr. Vezeridis is an active researcher with expertise in translational techniques in engineering to make image-guided interventions safer and more effective for patients.
Dr. Vezeridis obtained his undergraduate, MD, and PhD degrees from Boston University. He completed a two year post-doctoral training at UC San Diego in ultrasound molecular imaging under the auspices of the Cancer Researchers in Nanotechnology (CRIN) R25T, followed by residency and fellowship at UC San Diego.
Dr. Vezeridis is highly committed to training the next generation, including students, residents, fellows, and engineering graduate students through co-directing Bio301B.
Dr. Vezeridis has a strong interest in medical device development and commercialization, and completed the Stanford Biodesign Faculty Fellowship. -
José Vilches-Moure, DVM, PhD
Associate Professor of Comparative Medicine
BioDr. José G. Vilches-Moure, DVM, PhD, Associate Professor, received his DVM degree from Purdue University in Indiana in 2007. He completed his residency training in Anatomic Pathology (with emphasis in pathology of laboratory animal species) and his PhD in Comparative Pathology at the University of California-Davis. He joined Stanford in 2015, is the founder and current Faculty Director for Comparative and Experimental Pathology Post-doctoral Fellowship, the current Faculty Director of the Master of Laboratory Animal Science (MLAS) Graduate Program, and is the past Director of the Animal Histology Services (AHS; 2015-2022). Dr. Vilches-Moure is a diplomate of the American College of Veterinary Pathologists, and his collaborative research interests include refinement of animal models, cancer biology and early cancer detection techniques, cardiac development and pathology, developmental pathology, and host-pathogen interactions. His teaching interests include comparative anatomy/histology, general pathology, comparative pathology, and pathology of laboratory animal species.
-
Anne Villeneuve
Berthold and Belle N. Guggenhime Professor and Professor of Developmental Biology and of Genetics
Current Research and Scholarly InterestsMechanisms underlying homologous chromosome pairing, DNA recombination and chromosome remodeling during meiosis, using the nematode Caenorhabditis elegans as an experimental system. High-resolution 3-D imaging of dynamic reorganization of chromosome architecture. Role of protease inhibitors in regulating sperm activation.
-
Hannes Vogel MD
Professor of Pathology and of Pediatrics (Pediatric Genetics) and, by courtesy, of Neurosurgery, Neurology and Neurological Sciences and of Comparative Medicine
Current Research and Scholarly InterestsMy research interests include nerve and muscle pathology, mitochondrial diseases, pediatric neurooncology, and transgenic mouse pathology.
-
Douglas Vollrath
Professor of Genetics and, by courtesy, of Ophthalmology
Current Research and Scholarly InterestsThe Vollrath lab works to uncover molecular mechanisms relevant to the health and pathology of the outer retina. We study metabolic and other cellular interactions between the glial-like retinal pigment epithelium (RPE) and adjacent photoreceptors, with the goals of understanding the pathogenesis of photoreceptor degenerative diseases such as age-related macular degeneration and retinitis pigmentosa, and developing therapies.
-
Ayelet Voskoboynik
Assistant Professor (Research) of Biology
Current Research and Scholarly InterestsWe study several stem cell interrelated phenomena using the colonial chordate, Botryllus schlosseri. We use genetic, genomic, and cell biological approaches to investigate: The evolutionary molecular mechanisms that regulate the decline of tissue regenerative potential during aging and allogeneic stem cell competition in host.
-
Jelena Vuckovic
Jensen Huang Professor of Global Leadership, Professor of Electrical Engineering and, by courtesy, of Applied Physics
Current Research and Scholarly InterestsJelena Vuckovic’s research interests are broadly in the areas of nanophotonics, quantum and nonlinear optics. Her lab develops semiconductor-based photonic chip-scale systems with goals to probe new regimes of light-matter interaction, as well as to enable platforms for future classical and quantum information processing technologies. She also works on transforming conventional photonics with the concept of inverse design, where optimal photonic devices are designed from scratch using computer algorithms with little to no human input. Her current projects include quantum and nonlinear optics, cavity QED, and quantum information processing with color centers in diamond and in silicon carbide, heterogeneously integrated chip-scale photonic systems, and on-chip laser driven particle accelerators.
-
Anthony Wagner
Lucie Stern Professor in the Social Sciences
Current Research and Scholarly InterestsCognitive neuroscience of memory and cognitive/executive control in young and older adults. Research interests include encoding and retrieval mechanisms; interactions between declarative, nondeclarative, and working memory; forms of cognitive control; neurocognitive aging; functional organization of prefrontal cortex, parietal cortex, and the medial temporal lobe; assessed by functional MRI, scalp and intracranial EEG, and transcranial magnetic stimulation.
-
Soichi Wakatsuki
Professor of Photon Science and of Structural Biology
Current Research and Scholarly InterestsUbiquitin signaling: structure, function, and therapeutics
Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.
Protein self-assembly processes and applications.
The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.
Multiscale imaging and technology developments.
Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators. -
Virginia Walbot
Professor of Biology, Emerita
Current Research and Scholarly InterestsOur current focus is on maize anther development to understand how cell fate is specified. We discovered that hypoxia triggers specification of the archesporial (pre-meiotic) cells, and that these cells secrete a small protein MAC1 that patterns the adjacent soma to differentiate as endothecial and secondary parietal cell types. We also discovered a novel class of small RNA: 21-nt and 24-nt phasiRNAs that are exceptionally abundant in anthers and exhibit strict spatiotemporal dynamics.
-
Ken Waldron
Professor (Research) of Mechanical Engineering, Emeritus
BioKenneth J. Waldron is Professor of Mechanical and Mechatronic Engineering at UTS. He is also Professor Emeritus from the Design Group in the Department of Mechanical Engineering of Stanford University. He holds bachelors and masters degrees from the University of Sydney, and PhD from Stanford. He works in machine design, and design methodology with a particular focus on robotic and mechatronic systems.
-
Dennis Wall
Professor of Pediatrics (Clinical Informatics), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsSystems biology for design of clinical solutions that detect and treat disease
-
Guenther Walther
Professor of Statistics
BioGuenther Walther studied mathematics, economics, and computer science at the University of Karlsruhe in Germany and received his Ph.D. in Statistics from UC Berkeley in 1994.
His research has focused on statistical methodology for detection problems, shape-restricted inference, and mixture analysis, and on statistical problems in astrophysics and in flow cytometry.
He received a Terman fellowship, a NSF CAREER award, and the Distinguished Teaching Award of the Dean of Humanities and Sciences at Stanford. He has served on the editorial boards of the Journal of Computational and Graphical Statistics, the Journal of the Royal Statistical Society, the Annals of Statistics, the Annals of Applied Statistics, and Statistical Science. He was program co-chair of the 2006 Annual Meeting of the Institute of Mathematical Statistics and served on the executive committee of IMS from 1998 to 2012. -
Brian A. Wandell
Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and of Education
Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes. Image systems simulations of optics and sensors and image processing. Data and computation management for reproducible research.
-
Tom Wandless
Professor of Chemical and Systems Biology
Current Research and Scholarly InterestsWe employ an interdisciplinary approach to studies of biological systems, combining synthetic chemistry with biochemistry, cell biology, and structural biology. We invent tools for biology and we are motivated by approaches that enable new experiments with unprecedented control. These new techniques may also provide a window into mechanisms involved in maintaining cellular homeostasis. Protein quality control is a particular interest at present.
-
Adam Wang
Assistant Professor of Radiology and, by courtesy, of Electrical Engineering
BioMy research group develops technologies for advanced x-ray and CT imaging, including artificial intelligence for CT acquisition, reconstruction, and image processing; spectral imaging, including photon counting CT (PCCT) and dual-layer flat-panel detectors; novel system and detector designs; and their applications in diagnostic imaging and image-guided procedures. I am also the Director of the Photon Counting CT Lab, Zeego Lab, and Tabletop X-Ray Lab.
I completed my PhD in Electrical Engineering at Stanford, developing strategies for maximizing the information content of dual energy CT and photon counting detectors. I then pursued a postdoctoral fellowship at Johns Hopkins in the I-STAR Lab, developing reconstruction and registration methods for x-ray based image-guided surgery. I was then a Senior Scientist at Varian Medical Systems, developing x-ray/CT methods for image-guided radiation therapy, before returning to Stanford in 2018, where I now lead a comprehensive research program in advanced x-ray and CT imaging systems and methods, with funding from NIH, DOD, DOE, and industry partners. -
Bo Wang
Assistant Professor of Bioengineering and, by courtesy, Developmental Biology
Current Research and Scholarly InterestsResearch interests:
(1) Systems biology of whole-body regeneration
(2) Cell type evolution through the lens of single-cell multiomic sequencing analysis
(3) Quantitative biology of brain regeneration
(4) Regeneration of animal-algal photosymbiotic systems -
Paul J. Wang, MD
John R. and Ai Giak L. Singleton Director, Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsDr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang is committed to addressing disparities in care and is actively involved in increasing diversity in clinical trials.
-
Shan X. Wang
Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsShan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.
-
Sui Wang, PhD
Assistant Professor of Ophthalmology
Current Research and Scholarly InterestsOur research focuses on unraveling the molecular mechanisms underlying retinal development and diseases. We employ genetic and genomic tools to explore how various retinal cell types, including neurons, glia, and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels. In addition, we investigate their interactions and collective contributions to maintain retinal integrity.
1. Investigating retinal development:
We utilize genetic tools and methods such as in vivo plasmid electroporation and CRISPR to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal development.
2. Understanding diabetes-induced cell-type-specific responses in the retina:
Diabetes triggers a range of multicellular responses in the retina, such as vascular lesions, glial dysfunction, and neurodegeneration, all of which contribute to retinopathy. We delve into the detailed molecular mechanisms underlying these diabetes-induced cell-type-specific responses and the pathogenesis of diabetic retinopathy.
3. Developing molecular tools for labeling and manipulation of specific cell types in vivo:
Cis-regulatory elements, particularly enhancers, play pivotal roles in directing tissue- and cell-type-specific expression. Our interest lies in identifying enhancers that can drive cell type-specific expression in the retina and brain. We incorporate these enhancers into plasmid or AAV-based delivery systems, enabling precise labeling and manipulation of specific cell types in vivo. -
Xinnan Wang
Professor of Neurosurgery
Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.
-
Robert Waymouth
Robert Eckles Swain Professor of Chemistry and Professor, by courtesy, of Chemical Engineering
BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including bioactive polymers, synthetic fuels, and sustainable plastics. In one such breakthrough, Professor Waymouth and Professor Wender developed a new class of gene delivery agents.
Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.
Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. In collaboration with Dr. James Hedrick of IBM, we have developed a platform of highly active organic catalysts and continuous flow reactors that provide access to polymer architectures that are difficult to access by conventional approaches.
The Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver genes, drugs and probes into cells and live animals. These advances led to the joint discovery with the Wender group of a general, safe, and remarkably effective concept for RNA delivery based on a new class of synthetic cationic materials, Charge-Altering Releasable Transporters (CARTs). This technology has been shown to be effective for mRNA based cancer vaccines. -
Katja Gabriele Weinacht, MD, PhD
Assistant Professor of Pediatrics (Stem Cell Transplantation and Regenerative Medicine)
Current Research and Scholarly InterestsPediatric Hematopoietic Stem Cell Transplantation
DiGeorge Syndrome
Genetic Immune Diseases
Immune Dysregulation -
William Weis
Member, Bio-X
Current Research and Scholarly InterestsOur laboratory studies molecular interactions that underlie the establishment and maintenance of cell and tissue structure. Our principal areas of interest are the architecture and dynamics of intercellular adhesion junctions, signaling pathways that govern cell fate determination, and determinants of cell polarity. Our overall approach is to reconstitute macromolecular assemblies with purified components in order to analyze them using biochemical, biophysical and structural methods.
-
Irving Weissman
Virginia & D.K. Ludwig Professor of Clinical Investigation in Cancer Research, Professor of Pathology, and of Developmental Biology
Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis; order of events from hematopoietic stem cells [HSC] to AML leukemia stem cells and blood diseases, and parallels in other tissues; discovery of tumor and pathogenic cell 'don't eat me' and 'eat me' signals, and translation into therapeutics.
-
Itschak Weissman
Robert and Barbara Kleist Professor in the School of Engineering
BioTsachy's research focuses on Information Theory, Data Compression and Communications, Statistical Signal Processing, Machine Learning, the interplay between them, and their applications, with recent focus on applications to genomic data compression and processing. He is inventor of several patents and involved in several companies as member of the technical board. IEEE fellow, he serves on the board of governors of the information theory society as well as the editorial boards of the Transactions on Information Theory and Foundations and Trends in Communications and Information Theory. He is founding Director of the Stanford Compression Forum.
-
Paula V. Welander
Associate Dean for Integrative Initiatives in DEI and Professor of Earth System Science
Current Research and Scholarly InterestsBiosynthesis of lipid biomarkers in modern microbes; molecular geomicrobiology; microbial physiology
-
Paul Wender
Francis W. Bergstrom Professor and Professor, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsMolecular imaging, therapeutics, drug delivery, drug mode of action, synthesis
-
Gerlinde Wernig
Assistant Professor of Pathology
Current Research and Scholarly InterestsFibrotic diseases kill more people than cancer in this country and worldwide. We believe that scar-forming cells called fibroblasts are at the core of the fibrotic response in parenchymal organ fibrosis in the lung, liver, skin, bone marrow and tumor stroma. At the cellular level we think of fibrosis as a step wise process which implicates inflammation and fibrosis. We seek to identify new effective immune therapy targets to treat fibrotic diseases.