Wu Tsai Neurosciences Institute


Showing 381-400 of 555 Results

  • Suzanne Pfeffer

    Suzanne Pfeffer

    Emma Pfeiffer Merner Professor of Medical Sciences

    Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.

  • Harold Westley Phillips

    Harold Westley Phillips

    Assistant Professor of Neurosurgery (Pediatric Neurosurgery)

    BioH. Westley Phillips, MD is an Assistant Professor of Neurosurgery at Stanford University where he is a neurosurgeon-scientist specializing in pediatric neurosurgery with a special interest in epilepsy. Dr. Phillips received his undergraduate degree at Yale University where he was a member of the Varsity Football Team and received a Fulbright Scholarship. He completed an MD at the Perelman School of Medicine at the University of Pennsylvania, graduating with a certificate of distinction in the Clinical Neuroscience Training Program. He completed neurosurgical residency at UCLA where he received 2 years of NIH funding to investigate the genetic underpinnings of epilepsy. He received fellowship training in pediatric epilepsy surgery and genetics research at Boston Children’s Hospital as well as pediatric neurosurgery at the University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh before his arrival at Stanford. At Stanford, Dr. Phillips leads a molecular genetics laboratory and has a particular interest in defining and further understanding somatic mosaicism and its role in epileptogenesis. He has published manuscripts in leading academic journals including Nature: Genetics, JAMA Neurology, Journal of Neuroscience, Scientific Reports, Epilepsia and Neurology. He is dedicated to improving the treatment and outcomes for children with drug resistant epilepsy through innovative research and cutting-edge surgical techniques.

  • Sharon Pitteri

    Sharon Pitteri

    Associate Professor (Research) of Radiology (Cancer Early Detection-Canary Center)

    Current Research and Scholarly InterestsThe Pitteri laboratory is focused on the discovery and validation of proteins that can be used as molecular indicators of risk, diagnosis, progression, and recurrence of cancer. Proteomic technologies, predominantly mass spectrometry, are used to identify proteins in the blood that are differentially regulated and/or post-translationally modified with disease state. Using human plasma samples, tumor tissue, cancer cell lines, and genetically engineered mouse models, the origins of these proteins are being investigated. A major goal of this research is to define novel molecular signatures for breast and ovarian cancers, including particular sub-types of these diseases. This laboratory is also focused on the identification of proteins with expression restricted to the surface of cancer cells which can be used as novel targets for molecular imaging technologies.

  • Sylvia K. Plevritis, PhD

    Sylvia K. Plevritis, PhD

    William M. Hume Professor in the School of Medicine and Professor of Radiology (Integrative Biomedical Imaging Informatics at Stanford)

    Current Research and Scholarly InterestsMy research program focuses on computational modeling of cancer biology and cancer outcomes. My laboratory develops stochastic models of the natural history of cancer based on clinical research data. We estimate population-level outcomes under differing screening and treatment interventions. We also analyze genomic and proteomic cancer data in order to identify molecular networks that are perturbed in cancer initiation and progression and relate these perturbations to patient outcomes.

  • Kilian M Pohl

    Kilian M Pohl

    Professor (Research) of Psychiatry and Behavioral Sciences (Major Labs and Incubator)

    Current Research and Scholarly InterestsThe foundation of the laboratory of Associate Professor Kilian M. Pohl, PhD, is computational science aimed at identifying biomedical phenotypes improving the mechanistic understanding, diagnosis, and treatment of neuropsychiatric disorders. The biomedical phenotypes are discovered by unbiased, machine learning-based searches across biological, neuroimaging, and neuropsychological data. This data-driven discovery currently supports the adolescent brain research of the NIH-funded National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) and the Adolescent Brain Cognitive Development (ABCD), the largest long-term study of brain development and child health in the US. The laboratory also investigates brain patterns specific to alcohol use disorder and the human immunodeficiency virus (HIV) across the adult age range, and have advanced the understanding of a variety of brain diseases including schizophrenia, Alzheimer’s disease, glioma, and aging.

  • Russell Poldrack

    Russell Poldrack

    Albert Ray Lang Professor of Psychology

    Current Research and Scholarly InterestsOur lab uses the tools of cognitive neuroscience to understand how decision making, executive control, and learning and memory are implemented in the human brain. We also develop neuroinformatics tools and resources to help researchers make better sense of data.

  • Ada Poon

    Ada Poon

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOur research focuses on providing theoretical foundations and engineering platforms for realizing electronics that seamlessly integrate with the body. Such systems will allow precise recording or modulation of physiological activity, for advancing basic scientific discovery and for restoring or augmenting biological functions for clinical applications.

  • Matthew Porteus

    Matthew Porteus

    Sutardja Chuk Professor of Definitive and Curative Medicine

    BioDr. Porteus was raised in California and was a local graduate of Gunn High School before completing A.B. degree in “History and Science” at Harvard University where he graduated Magna Cum Laude and wrote an thesis entitled “Safe or Dangerous Chimeras: The recombinant DNA controversy as a conflict between differing socially constructed interpretations of recombinant DNA technology.” He then returned to the area and completed his combined MD, PhD at Stanford Medical School with his PhD focused on understanding the molecular basis of mammalian forebrain development with his PhD thesis entitled “Isolation and Characterization of TES-1/DLX-2: A Novel Homeobox Gene Expressed During Mammalian Forebrain Development.” After completion of his dual degree program, he was an intern and resident in Pediatrics at Boston Children’s Hospital and then completed his Pediatric Hematology/Oncology fellowship in the combined Boston Chidlren’s Hospital/Dana Farber Cancer Institute program. For his fellowship and post-doctoral research he worked with Dr. David Baltimore at MIT and CalTech where he began his studies in developing homologous recombination as a strategy to correct disease causing mutations in stem cells as definitive and curative therapy for children with genetic diseases of the blood, particularly sickle cell disease. Following his training with Dr. Baltimore, he took an independent faculty position at UT Southwestern in the Departments of Pediatrics and Biochemistry before again returning to Stanford in 2010 as an Associate Professor. During this time his work has been the first to demonstrate that gene correction could be achieved in human cells at frequencies that were high enough to potentially cure patients and is considered one of the pioneers and founders of the field of genome editing—a field that now encompasses thousands of labs and several new companies throughout the world. His research program continues to focus on developing genome editing by homologous recombination as curative therapy for children with genetic diseases but also has interests in the clonal dynamics of heterogeneous populations and the use of genome editing to better understand diseases that affect children including infant leukemias and genetic diseases that affect the muscle. Clinically, Dr. Porteus attends at the Lucille Packard Children’s Hospital where he takes care of pediatric patients undergoing hematopoietic stem cell transplantation.

  • Kathleen Poston, MD, MS

    Kathleen Poston, MD, MS

    Edward F. and Irene Thiele Pimley Professor of Neurology and the Neurological Sciences and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research addresses one of the most devastating and poorly treated symptoms that can develop in people with Parkinson's disease - Dementia. We use multi-modal neuroimaging along with genetic and biological markers to understand the different underlying causes of dementia and to understand why dementia develops more quickly in some patients, but not others.

  • Manu Prakash

    Manu Prakash

    Associate Professor of Bioengineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Oceans and of Biology

    BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.

  • James Priest

    James Priest

    Adjunct Clinical Assistant Professor, Pediatrics - Cardiology

    Current Research and Scholarly InterestsThe Priest lab seeks a better understanding of the genetics and pathogenesis of congenital heart disease using translational genomics, big-data, and vertebrate models of cardiac development.

  • David Prince

    David Prince

    Edward F. and Irene Thiele Pimley Professor of Neurology and the Neurological Sciences, Emeritus

    Current Research and Scholarly InterestsExperiments examine
    1)intrinsic properties of neuronal membranes; actions of neurotransmitters that regulate neocortical and thalamic excitability
    2) chronic epileptogenesis following cortical injury; changes in intracortical connectivity and receptors;
    3) effects of early injury and activity on cortical development/maldevelopment Electrophysiological, anatomical and pharmacological techniques employed.
    4. prophylaxis of postraumatic epilepsy
    5. Neocortical interneuronal function/modulation

  • Patrick Lee Purdon

    Patrick Lee Purdon

    Professor of Anesthesiology, Perioperative and Pain Medicine and, by courtesy, of Bioengineering

    BioMy research integrates neuroimaging, biomedical signal processing, and the systems neuroscience of general anesthesia and sedation.

    My group conducts human studies of anesthesia-induced unconsciousness, using a variety of techniques including multimodal neuroimaging, high-density EEG, and invasive neurophysiological recordings used to diagnose medically refractory epilepsy. We also develop novel methods in neuroimaging and biomedical signal processing to support these studies, as well as methods for monitoring level of consciousness under general anesthesia using EEG.

  • Lei (Stanley) Qi

    Lei (Stanley) Qi

    Associate Professor of Bioengineering

    BioDr. Lei (Stanley) Qi is Associate Professor of Bioengineering, Sarafan ChEM-H, and a Chan Zuckerberg Biohub Investigator. Dr. Qi is a principal contributor to the development of CRISPR technologies for genome engineering beyond gene editing. His lab created the first nuclease-deactivated Cas9 (dCas9) for targeted gene regulation in cells. His lab has invented a CRISPR toolbox for engineering the epigenome, including CRISPRi and CRISPRa for targeted gene repression and activation, epigenome editing, LiveFISH for real-time DNA/RNA imaging, CRISPR-GO for 3D genome manipulation, CasMINI as a compact CRISPR system for gene therapy, hyperCas12a for multi-gene engineering, and CRISPR antivirals aimed at treating broad RNA viruses.

    Dr. Qi obtained B.S. in Physics and Math from Tsinghua University in 2005, and Ph.D. in Bioengineering from the University of California, Berkeley in 2012. He was a Systems Biology Faculty Fellow at UCSF between 2012-2014, and joined Stanford faculty in 2014. His research focuses on mammalian synthetic biology, epigenetic engineering, immune cell engineering, directed evolution, and novel approaches for gene therapy.

  • Jian Qin

    Jian Qin

    Assistant Professor of Chemical Engineering

    BioJian Qin is an Assistant Professor in the Department of Chemical Engineering at the Stanford University. His research focuses on development of microscopic understanding of structural and physical properties of soft matters by using a combination of analytical theory, scaling argument, numerical computation, and molecular simulation. He worked as a postdoctoral scholar with Juan de Pablo in the Institute for Molecular Engineering at the University of Chicago and with Scott Milner in the Department of Chemical Engineering at the Pennsylvania State University. He received his Ph.D. in the Department of Chemical Engineering and Materials Science at the University of Minnesota under the supervision of David Morse and Frank Bates. His research covers self-assembly of multi-component polymeric systems, molecular origin of entanglement and polymer melt rheology, coacervation of polyelectrolytes, Coulomb interactions in dielectrically heterogeneous electrolytes, and surface charge polarizations in particulate aggregates in the absence or presence of flow.

  • Stephen Quake

    Stephen Quake

    Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics

    Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.

  • Jennifer Anne Rabbitts

    Jennifer Anne Rabbitts

    Professor of Anesthesiology, Perioperative & Pain Medicine (Pediatric Anesthesia) and, by courtesy, of Pediatrics

    BioJennifer Rabbitts, MD is Professor and Chief of Pediatric Pain Management at Stanford University School of Medicine. Dr. Rabbitts directs an NIH-funded research laboratory focused on improving long-term pain and health outcomes in children and adolescents undergoing surgery. Her research is devoted to understanding and preventing chronic postsurgical pain, a disabling condition affecting 20% youth undergoing major surgery. Her current research studies investigate the role of biopsychosocial mechanisms including child psychosocial factors, parental/family factors, and psychophysical processes underlying acute to chronic pain transition. Current clinical trials focus on testing feasibility and efficacy of psychosocial and complementary and integrative interventions to improve acute postsurgical pain and prevent transition to chronic pain.

    Dr Rabbitts is passionate about mentoring, serving as mentor for the Women's Empowerment and Leadership Initiative and for the Mission Driven Mentoring Program for Diversity, Equity, and Inclusion, of the Society for Pediatric Anesthesia. She serves as section editor for Psychology, Psychiatry and Brain Neuroscience Section for Pain Medicine, on the editorial boards for Pediatric Anesthesia and Journal of Pain, and actively serves on committees in the United States Association for the Study of Pain.