Independent Labs, Institutes, and Centers (Dean of Research)
Showing 11-20 of 72 Results
-
Rongxin Fang
Assistant Professor of Neurosurgery and, by courtesy, of Genetics
BioRongxin received his Ph.D. in Bioinformatics and Systems Biology at UC San Diego, where he was advised by Bing Ren (2015-2019). During this time, he developed high-throughput genomic technologies and computational tools to map the structure and activity of the mammalian genome at a large scale with single-cell resolution. He then applied these approaches to understand how cis-regulatory elements such as enhancers in the genome control gene expression and how this process can give rise to the distinct gene expression programs that underlie the cellular diversity in the mammalian brain. As an HHMI-Damon Runyon Postdoctoral Fellow in the laboratory of Xiaowei Zhuang at Harvard University (2019-2024), he developed and applied genome-scale and volumetric 3D transcriptome imaging methods to map the molecular and cellular architecture of the mammalian brain during evolution and aging. He also participated in the collaboration with Adam Cohen and Catherine Dulac to combine transcriptome imaging with functional neuronal recording to identify neuronal populations in the animal brain that underlie specific bran functions.
-
Kayvon Fatahalian
Associate Professor of Computer Science
BioKayvon Fatahalian is an Associate Professor in the Computer Science Department at Stanford University. Kayvon's research focuses on the design of systems for real-time graphics, high-efficiency simulation engines for applications in entertainment and AI, and platforms for the analysis of images and videos at scale.
-
C. Garrison Fathman
Professor of Medicine (Immunology and Rheumatology), Emeritus
Current Research and Scholarly InterestsMy lab of molecular and cellular immunology is interested in research in the general field of T cell activation and autoimmunity. We have identified and characterized a gene (GRAIL) that seems to control regulatory T cell (Treg) responsiveness by inhibiting the Treg IL-2 receptor desensitization. We have characterized a gene (Deaf1) that plays a major role in peripheral tolerance in T1D. Using PBC gene expression, we have provisionally identified a signature of risk and progression in T1D.
-
Michael Fayer
David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry
BioMy research group studies complex molecular systems by using ultrafast multi-dimensional infrared and non-linear UV/Vis methods. A basic theme is to understand the role of mesoscopic structure on the properties of molecular systems. Many systems have structure on length scales large compare to molecules but small compared to macroscopic dimensions. The mesoscopic structures occur on distance scales of a few nanometers to a few tens of nanometers. The properties of systems, such as water in nanoscopic environments, room temperature ionic liquids, functionalized surfaces, liquid crystals, metal organic frameworks, water and other liquids in nanoporous silica, polyelectrolyte fuel cell membranes, vesicles, and micelles depend on molecular level dynamics and intermolecular interactions. Our ultrafast measurements provide direct observables for understanding the relationships among dynamics, structure, and intermolecular interactions.
Bulk properties are frequently a very poor guide to understanding the molecular level details that determine the nature of a chemical process and its dynamics. Because molecules are small, molecular motions are inherently very fast. Recent advances in methodology developed in our labs make it possible for us to observe important processes as they occur. These measurements act like stop-action photography. To focus on a particular aspect of a time evolving system, we employ sequences of ultrashort pulses of light as the basis for non-linear methods such as ultrafast infrared two dimensional vibrational echoes, optical Kerr effect methods, and ultrafast IR transient absorption experiments.
We are using ultrafast 2D IR vibrational echo spectroscopy and other multi-dimensional IR methods, which we have pioneered, to study dynamics of molecular complexes, water confined on nm lengths scales with a variety of topographies, molecules bound to surfaces, ionic liquids, and materials such as metal organic frameworks and porous silica. We can probe the dynamic structures these systems. The methods are somewhat akin to multidimensional NMR, but they probe molecular structural evolution in real time on the relevant fast time scales, eight to ten orders of magnitude faster than NMR. We are obtaining direct information on how nanoscopic confinement of water changes its properties, a topic of great importance in chemistry, biology, geology, and materials. For the first time, we are observing the motions of molecular bound to surfaces. In biological membranes, we are using the vibrational echo methods to study dynamics and the relationship among dynamics, structure, and function. We are also developing and applying theory to these problems frequently in collaboration with top theoreticians.
We are studying dynamics in complex liquids, in particular room temperature ionic liquids, liquid crystals, supercooled liquids, as well as in influence of small quantities of water on liquid dynamics. Using ultrafast optical heterodyne detected optical Kerr effect methods, we can follow processes from tens of femtoseconds to ten microseconds. Our ability to look over such a wide range of time scales is unprecedented. The change in molecular dynamics when a system undergoes a phase change is of fundamental and practical importance. We are developing detailed theory as the companion to the experiments.
We are studying photo-induced proton transfer in nanoscopic water environments such as polyelectrolyte fuel cell membranes, using ultrafast UV/Vis fluorescence and multidimensional IR measurements to understand the proton transfer and other processes and how they are influenced by nanoscopic confinement. We want to understand the role of the solvent and the systems topology on proton transfer dynamics. -
James Fearon
Theodore and Frances Geballe Professor in the School of Humanities and Sciences, Senior Fellow at the Freeman Spogli Institute for International Studies and Professor, by courtesy, of Economics
Current Research and Scholarly Interestspolitical violence
-
Ron Fedkiw
Canon Professor in the School of Engineering
BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.
-
Vivian Feig
Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioThe Feig lab aims to develop low-cost, noninvasive, and widely-accessible medical technologies that integrate seamlessly with the human body. We accomplish this by developing functional materials and devices with dynamic mechanical properties, leveraging chemistry and physics insights to engineer novel systems at multiple length scales. In pursuit of our goals, we maintain a strong emphasis on integrity and diversity, while nurturing the intellectual curiosity and holistic growth of our team members as researchers, communicators, and leaders.
-
Jeffrey A. Feinstein, MD, MPH
Dunlevie Family Professor of Pulmonary Vascular Disease and Professor, by courtesy, of Bioengineering
Current Research and Scholarly InterestsResearch interests include (1) computer simulation and modeling of cardiovascular physiology with specific attention paid to congenital heart disease and its treatment, (2) the evaluation and treatment of pulmonary hypertension/pulmonary vascular diseases, and (3) development and testing of medical devices/therapies for the treatment of congenital heart disease and pulmonary vascular diseases.
-
Heidi M. Feldman
Ballinger-Swindells Endowed Professor of Developmental and Behavioral Pediatrics
On Partial Leave from 03/01/2025 To 05/04/2025Current Research and Scholarly InterestsMy current research program focuses on infants born preterm, before 32 weeks gestation from two language environments: English and Spanish. The study considers how neurobiological factors, specifically properties of the white matter circuits in the brain, interact with social, psychological, and economic factors to predict language processing efficiency at 18 months of age.