School of Engineering
Showing 101-200 of 276 Results
-
Scott L. Delp, Ph.D.
Director, Wu Tsai Human Performance Alliance at Stanford, James H. Clark Professor in the School of Engineering, Professor of Bioengineering, of Mechanical Engineering and, by courtesy, of Orthopaedic Surgery
Current Research and Scholarly InterestsExperimental and computational approaches to study human movement. Development of biomechanical models to analyze muscle function, study movement abnormalities, design medical products, and guide surgery. Imaging and health technology development. Discovering the principles of peak performance to advance human health. Human performance research. Wearable technologies, video motion capture, and machine learning to enable large-scale analysis.
-
Utkan Demirci
Professor of Radiology (Diagnostic Sciences Laboratory) and, by courtesy, of Electrical Engineering
BioDr. Utkan Demirci, UofM’99, Stanford’01’05’05, is a Professor of Radiology (with tenure) and of Electrical Engineering (by courtesy) at the Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, where he leads a productive researcher group. Utkan is a tenured professor at Stanford University School of Medicine. Prior to joining Stanford in 2014, he held the position of Associate Professor at the Brigham and Women’s Hospital-Harvard Medical School and also served at the Harvard-MIT Health Sciences and Technology division. Over the past decade, his research group has focused on the early detection of cancer and has made significant contributions to the development of microfluidic platforms for sorting rare cells and exosomes and point-of-care bio-sensing technologies.
Dr. Demirci leads a productive and impactful research group focused on addressing problems from the clinic with innovations including cell sorter for IVF, optical technologies for detecting viruses, portable point of care technologies for diagnostics in global health, smart robots in vivo, extracellular vesicle based early detection approaches for cancer. He is an elected fellow of the American Institute of Medical and Biological Engineering and The Academy for Radiology & Biomedical Imaging Research Distinguished Investigator.
He has published over 250 peer-reviewed articles, 300 abstracts and proceedings, 24 book chapters and editorials, and 7 edited books. He also serves on the editorial board of various journals. He holds 15 patents (11 of which are translated into broadly used biomedical products) and has co-founded multiple successful companies. Dr. Demirci's pioneering work in microfluidics and cell sorting has resulted in CE certified and FDA approved devices used in over 500,000 clinical cases serving patients globally. -
Dora Demszky
Assistant Professor of Education and, by courtesy, of Computer Science
BioDr. Demszky is an Assistant Professor in Education Data Science at the Graduate School of Education at Stanford University. She works on developing natural language processing methods to support equitable and student-centered instruction. She has developed tools to give feedback to teachers on dialogic instructional practices, to analyze representation in textbooks, measure the presence of dialect features in text, among others. Dr Demszky has received her PhD in Linguistics at Stanford University, supervised by Dr Dan Jurafsky. Prior to her PhD, Dr. Demszky received a BA summa cum laude from Princeton University in Linguistics with a minor in Computer Science.
-
Jesse DeRose
Masters Student in Management Science and Engineering, admitted Autumn 2024
Bio10 years building digital transformation programs across IT, DevOps, and FinOps taught me that lasting operational resilience stems from people, not from technology. My programs are successful because they align people, processes, and technology to accomplish quick wins and create sustainable long-term change.
My consulting mindset enables me to work with multiple organizations and vendors at various levels of project management maturity, and build strong working relationships with senior leaders and engineers across functions and departments. My deep familiarity with software and business development processes enables me to effectively manage complex cross-functional projects. -
John DeSilva
Systems & Network Manager, Electrical Engineering
Current Role at StanfordSystems & Network Manager, David Packard Electrical Engineering Building
-
Joseph M. DeSimone
Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry, of Materials Science and Engineering, and of Operations, Information and Technology at the Graduate School of Business
BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.
The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.
Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.
In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech. -
Abhijit Devalapura
Masters Student in Computer Science, admitted Autumn 2021
BioSIEPR Undergraduate Research Fellow 2022-2023
-
Thomas Devereaux
Professor of Photon Science, of Materials Science and Engineering and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsMy main research interests lie in the areas of theoretical condensed matter physics and computational physics. My research effort focuses on using the tools of computational physics to understand quantum materials. Fortunately, we are poised in an excellent position as the speed and cost of computers have allowed us to tackle heretofore unaddressed problems involving interacting systems. The goal of my research is to understand electron dynamics via a combination of analytical theory and numerical simulations to provide insight into materials of relevance to energy science. My group carries out numerical simulations on SIMES’ high-performance supercomputer and US and Canadian computational facilities. The specific focus of my group is the development of numerical methods and theories of photon-based spectroscopies of strongly correlated materials.
-
Ludwing Diaz
Staff, SCPD Open Enrollment Programs
Scpd Course Developer, Stanford Engineering Center for Global and Online EducationBioCISSP, Information Security SME with more than 25+ years of experience in Infrastructure Security for large scale networks.
BS Electronic Engineering - Universidad Pontificia Bolivariana
MS Telecommunications and Networking Systems- Florida International University
Advance Computer Security Professional Certification - Stanford SCPD
Cybersecurity Graduate Program at Stanford, NDO. -
Gerwin Dijk
Postdoctoral Scholar, Materials Science and Engineering
BioBioelectronics, neurostimulation, biosensors, conducting polymers, microfabrication.
-
David Dill
Donald E. Knuth Professor in the School of Engineering, Emeritus
Current Research and Scholarly InterestsSecure and reliable blockchain technology at Facebook.
-
Katryna Dillard
Senior Program Manager, Program-Bao Z.
BioKatryna Dillard joined Stanford University in 2021 as the program manager for the Stanford Wearable Electronics (eWEAR) Initiative. As the program manager Katryna manages the logistics of annual symposiums, monthly seminars/newsletters, tracking and updating current affiliate member companies, and acts as a point of contact with affiliate members while providing administrative support. Prior to joining eWEAR Katryna worked in hotels at the front desk and events for 5 years. She graduated from Whittier College with a B.A. in Sociology and Theatre Communication Arts with an emphasis in Design and Technology.
-
Jennifer Dionne
Professor of Materials Science and Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
BioJennifer (Jen) Dionne is a Professor of Materials Science and Engineering and, by courtesy, of Radiology at Stanford. She is also a Chan Zuckerberg Biohub Investigator, deputy director of Q-NEXT (a DOE National Quantum Initiative), and co-founder of Pumpkinseed, a company developing quantum sensors to understand and optimize the immune system. From 2020-2023, Jen served as Stanford’s Inaugural Vice Provost of Shared Facilities, raising capital to modernize instrumentation, fund experiential education, foster staff development, and support new and existing users of the shared facilities. Jen received her B.S. degrees in Physics and Systems Science and Mathematics from Washington University in St. Louis, her Ph. D. in Applied Physics at the California Institute of Technology in 2009, and her postdoctoral training in Chemistry at Berkeley. As a pioneer of nanophotonics, she is passionate about developing methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her research has developed culture-free methods to detect pathogens and their antibiotic susceptibility; amplification-free methods to detect and sequence nucleic acids and proteins; and new methods to image light-driven chemical reactions with atomic-scale resolution. Jen’s work has been featured in NPR, the Economist, Science, and Nature, and recognized with the NSF Alan T. Waterman Award, a NIH Director’s New Innovator Award, a Moore Inventor Fellowship, and the Presidential Early Career Award for Scientists and Engineers. She was also featured on Oprah’s list of “50 Things that will make you say ‘Wow’!”. She also perceives outreach as a critical component of her role and frequently collaborates with visual and performing artists to convey the beauty of science to the broader public.
-
Varun Dolia
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2021
BioVarun Dolia is a Benchmark Fellow and a Ph.D. candidate in Prof. Jen Dionne's lab. He is excited about developing nanophotonic platforms for health and environmental monitoring.
-
Stefan P. Domino
Adjunct Professor, Institute for Computational and Mathematical Engineering (ICME)
BioDr. Domino’s research interest rests within low-Mach fluid mechanics methods development for complex systems that drive the coupling of mass, momentum, species and energy transport. His core research resides within the intersection of physics elucidation, numerical methods research, V&V techniques exploration, and high performance computing and coding methods for turbulent flow applications. Stefan also supports the teaching of ME469, Computational Methods in Fluid Mechanics, while continuing his primary career at Sandia National Laboratories as a Distinguished Member of the Technical Staff.
Education:
University of Utah
Ph.D. Department of Chemical Engineering, 2000
"Methods towards improved simulations for the oxides of nitrogen in pulverized-coal furnaces"
Professor Philip J. Smith, Advisor
Select Recent Publications:
* Domino, S. P., "On the subject of large-scale pool fires and turbulent boundary layer interactions", Phys. Fluids, 2024. (Featured)
* Domino, S. P., Wenzel, E. A, "A direct numerical simulation study for confined non-isothermal jet impingement at moderate nozzle-to-plate distances: capturing jet-to-ambient density effects", Int. J. Heat Mass Trans, 2023.
* Benjamin, M., Domino, S. P., Iaccarino, G., "Neural networks for large eddy simulations of wall-bounded turbulence: numerical experiments and challenges", Eur. Phys. J. E., 2023.
* Hubbard, J., Cheng, M., Domino, S. P., "Mixing in low-Reynolds number reacting impinging jets in crossflow", J. Fluids Engr., 2023.
* Domino, S. P. “Unstructured finite volume approaches for turbulence,” in Numerical Methods in Turbulence Simulation, edited by R. Moser (Elsevier, 2023), Ch. 7, pp. 285–317.
* Scott, S., Domino, S. P., "A computational examination of large-scale pool fires: variations in crosswind velocity and pool shape", Flow, 2022.
* Domino, S. P., Horne, W., "Development and deployment of a credible unstructured, six-DOF, implicit low-Mach overset simulation tool for wave energy applications", Renew. Energy, 2022.
* Hubbard, J., Hansen, M., Kirsch, J., Hewson, J., Domino, S. P., “Medium scale methanol pool fire model validation”, J. Heat Transfer, 2022.
* Barone, M., Ray, J., Domino, S. P., "Feature selection, clustering, and prototype placement for turbulence datasets", AIAA J., 2021,
* Domino, S. P., Hewson, J., Knaus, R., Hansen, M., "Predicting large-scale pool fire dynamics using an unsteady flamelet- and large-eddy simulation-based model suite", Phys. Fluids, 2021. (Editor's pick)
* Domino, S. P., "A case study on pathogen transport, deposition, evaporation and transmission: linking high-fidelity computational fluid dynamics simulations to probability of infection", Int. J. CFD, 2021.
* Domino, S. P., Pierce, F., Hubbard, J., "A multi-physics computational investigation of droplet pathogen transport emanating from synthetic coughs and breathing", Atom. Sprays, 2021.
* Jofre, L., Domino, S. P., Iaacarino, G., "Eigensensitivity analysis of subgrid-scale stresses in large-eddy simulation of a turbulent axisymmetric jet", Int. J. Heat Fluid Flow, 2019.
* Domino, S. P., Sakievich, P., Barone, M., "An assessment of atypical mesh topologies for low-Mach large-eddy simulation", Comp. Fluids, 2019.
* Domino, S. P., "Design-order, non-conformal low-Mach fluid algorithms using a hybrid CVFEM/DG approach ", J. Comput. Physics, 2018.
* Jofre, L., Domino, S. P., Iaacarino, G., "A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation Closures", Flow Turb. Combust., 2018.
CV: https://github.com/spdomin/Present/blob/master/cv/dominoCV.pdf -
Changxin Lyla Dong
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2022
BioLyla Dong is committed to advancing innovative materials solutions that address critical challenges in health and environmental sustainability. Her research spans multiple fields, including hydrogel development, materials characterization, and electrochemistry. As a PhD candidate at Stanford University advised by Professor Eric A. Appel, she focuses on creating cutting-edge materials to protect against wildfires and improve therapeutic delivery systems.
Prior to her studies at Stanford, Lyla conducted research under the mentorship of Professors Pulickel M. Ajayan and Haotian Wang at Rice University. She developed functional materials for batteries and explored technologies for carbon capture, discovering her passion for sustainable materials science.
Through her interdisciplinary approach, Lyla strives to bridge the critical intersections between health and environmental sustainability, creating solutions that have a real-world impact.