School of Engineering
Showing 1-7 of 7 Results
-
Pat Hanrahan
Canon Professor in the School of Engineering and Professor of Electrical Engineering, Emeritus
BioProfessor Hanrahan's current research involves rendering algorithms, high performance graphics architectures, and systems support for graphical interaction. He also has worked on raster graphics systems, computer animation and modeling and scientific visualization, in particular, volume rendering.
-
James Harris
James and Elenor Chesebrough Professor in the School of Engineering, Emeritus
Current Research and Scholarly InterestsResearch interests have been in the areas of new electronic and optoelectronic device structures created by heterojunctions, quantum wells, superlattices and nanostructured materials. Molecular Beam Epitaxy (MBE) has been the foundation to prepare nanostructured structured metastable materials with atomic layer control and dimensions smaller than the wavelength of electrons. In this regime, quantum size effects can be utilized to create entirely new device structures based upon tailored transitions between quantum states and tunneling between states and structures. Past two decades focused on MBE growth of novel optoelectronic materials (GaInNAsSb) for long wavelength lasers and solar cells; quantum well structures for surface emitting lasers, high-power lasers, high speed optical modulators and non-linear optical effects for generation, control and application of ultra-short optical pulses; ultra-high efficiency multi-bandgap solar cells; world record solar to hydrogen conversion with water splitting; Si based photonic devices, including single photon avalanche detector (SPAD) for range finding and autonomous vehicles and implantable retina prosthesis with first human response in phase 1 human trials, 12/17; integrated photonic systems for biomedical detection and applications; integrated nanophotonic structures for laser driven dielectric electron accelerators and free electron lasers (FEL) on a wafer.
-
Jerry Harris
The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus
Current Research and Scholarly InterestsBiographical Information
Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.
Research
My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.
Teaching
I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.
Professional Activities
I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG. -
Seamus Harte
Lecturer
BioSeamus Yu Harte is the the Head of Learning Experience Design for the Electives Program at the Hasso Plattner Institute of Design (aka the d.school) and the founder of Only People, a learning experience design studio based inspired by the art & activism of John Lennon & Yoko Ono. From Yoko Ono to David Kelley, Seamus has had the opportunity to teach and learn with world-class creatives. He holds a BS in Sound Design from SAE and a MFA in Documentary Film + Video from Stanford University where he also received Fellowships from The Stanford Institute for Creativity and the Arts (SiCA) and The San Francisco Foundation.
-
Trevor Hastie
John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences
Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.
-
Mark Holodniy
Professor of Medicine (Infectious Diseases)
Current Research and Scholarly InterestsMy research program is currently focused in three areas: 1) Translational research (viral evolution and antiviral resistance prevalence and development), 2) Clinical trials (diagnostic assay/medical device, antimicrobials and immunomodulators), and 3) Health services research focusing on public health, infectious diseases and clinical outcomes.
-
Mark Horowitz
Fortinet Founders Chair of the Department of Electrical Engineering, Yahoo! Founders Professor in the School of Engineering and Professor of Computer Science
BioProfessor Horowitz initially focused on designing high-performance digital systems by combining work in computer-aided design tools, circuit design, and system architecture. During this time, he built a number of early RISC microprocessors, and contributed to the design of early distributed shared memory multiprocessors. In 1990, Dr. Horowitz took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth memory interface technology. After returning in 1991, his research group pioneered many innovations in high-speed link design, and many of today’s high speed link designs are designed by his former students or colleagues from Rambus.
In the 2000s he started a long collaboration with Prof. Levoy on computational photography, which included work that led to the Lytro camera, whose photographs could be refocused after they were captured.. Dr. Horowitz's current research interests are quite broad and span using EE and CS analysis methods to problems in neuro and molecular biology to creating new agile design methodologies for analog and digital VLSI circuits. He remains interested in learning new things, and building interdisciplinary teams.