School of Engineering
Showing 1-55 of 55 Results
-
Ade Mabogunje
Sr Research Engineer
BioAde Mabogunje conducts research on the design thinking process with a view to instrumenting and measuring the process and giving feedback to design thinking teams on ways to improve their performance. He works in collaboration with partners in the engineering education, design practice and investment community as a participant-observer in the practice of building and developing ecosystems that support accelerated and continuous innovation in products and services. Prior to this he was the associate director of the Stanford Center for Design Research (CDR). He was also the lead of the Real-time Venture Design Lab program (ReVeL) in the school of Humanities and Sciences. His industry experience includes engineering positions at the French Oil Company Elf (now Total) and research collaboration with Artificial Intelligence Scientists at NASA Ames. He has publications in the areas of design theory and methodology, knowledge management, emotions in engineering, design protocol analysis, and engineering-design education.
-
Jennifer Maier
Postdoctoral Scholar, Mechanical Engineering
BioMy research interests include a broad variety of topics, ranging from medical image analysis and signal processing, machine learning and artificial intelligence, which I mainly focused on during my Ph.D. research. As a member of the Digital Athlete project of the Wu Tsai Performance Allience, I am now pursuing research to investigate how we can use wearable sensors, machine learning and biomechanical simulations to improve athlete performance, prevent injuries and support rehabilitation after injury.
I completed my Bachelor of Science and Master of Science degrees in medical engineering from Friedrich-Alexander-University Erlangen-Nuernberg (FAU). In 2015, I worked on my master’s thesis under the supervision of Prof. Kamiar Aminian during a research stay in the Laboratory of Movement Analysis and Measurement (LMAM), École Polytechnique Fédérale de Lausanne (EPFL), supported by a DAAD Scholarship. Afterwards, I pursued my Ph.D. at FAU in the Pattern Recognition Laboratory under the supervision of Prof. Andreas Maier and in the Machine Learning and Data Analytics Lab under the supervision of Prof. Bjoern Eskofier. I worked on projects in collaboration with Stanford University and the Universidade do Vale do Rio dos Sinos (UNISINOS) and conducted several short-term research stays at the partner universities. After finishing my Ph.D. in 2021, I joined Stanford University as a postdoctoral scholar advised by Prof. Ellen Kuhl. -
Dr. Arun Majumdar
Dean, Stanford Doerr School of Sustainability, Jay Precourt Professor, Professor of Mechanical Engineering, of Energy Science & Engineering, of Photon Science, by courtesy, of Materials Sci & Eng and Senior Fellow, by courtesy, at Hoover
BioDr. Arun Majumdar is the inaugural Dean of the Stanford Doerr School of Sustainability. He is the Jay Precourt Provostial Chair Professor at Stanford University, a faculty member of the Departments of Mechanical Engineering and Energy Science and Engineering, a Senior Fellow and former Director of the Precourt Institute for Energy and Senior Fellow (courtesy) of the Hoover Institution. He is also a faculty in Department of Photon Science at SLAC.
In October 2009, Dr. Majumdar was nominated by President Obama and confirmed by the Senate to become the Founding Director of the Advanced Research Projects Agency - Energy (ARPA-E), where he served until June 2012 and helped ARPA-E become a model of excellence and innovation for the government with bipartisan support from Congress and other stakeholders. Between March 2011 and June 2012, he also served as the Acting Under Secretary of Energy, enabling the portfolio of Office of Energy Efficiency and Renewable Energy, Office of Electricity Delivery and Reliability, Office of Nuclear Energy and the Office of Fossil Energy, as well as multiple cross-cutting efforts such as Sunshot, Grid Modernization Team and others that he had initiated. Furthermore, he was a Senior Advisor to the Secretary of Energy, Dr. Steven Chu, on a variety of matters related to management, personnel, budget, and policy. In 2010, he served on Secretary Chu's Science Team to help stop the leak of the Deep Water Horizon (BP) oil spill.
Dr. Majumdar serves as the Chair of the Advisory Board of the US Secretary of Energy, Jennifer Granholm. He led the Agency Review Team for the Department of Energy, Federal Energy Regulatory Commission and the Nuclear Regulatory Commission during the Biden-Harris Presidential transition. He served as the Vice Chairman of the Advisory Board of US Secretary of Energy, Dr. Ernest Moniz, and was also a Science Envoy for the US Department of State with focus on energy and technology innovation in the Baltics and Poland. He also serves on numerous advisory boards and boards of businesses, investment groups and non-profit organizations.
After leaving Washington, DC and before joining Stanford, Dr. Majumdar was the Vice President for Energy at Google, where he assembled a team to create technologies and businesses at the intersection of data, computing and electricity grid.
Dr. Majumdar is a member of the US National Academy of Sciences, US National Academy of Engineering and the American Academy of Arts and Sciences. His research in the past has involved the science and engineering of nanoscale materials and devices, especially in the areas of energy conversion, transport and storage as well as biomolecular analysis. His current research focuses on redox reactions and systems that are fundamental to a sustainable energy future, multidimensional nanoscale imaging and microscopy, and an effort to leverage modern AI techniques to develop and deliver energy and climate solutions.
Prior to joining the Department of Energy, Dr. Majumdar was the Almy & Agnes Maynard Chair Professor of Mechanical Engineering and Materials Science & Engineering at University of California–Berkeley and the Associate Laboratory Director for energy and environment at Lawrence Berkeley National Laboratory. He also spent the early part of his academic career at Arizona State University and University of California, Santa Barbara.
Dr. Majumdar received his bachelor's degree in Mechanical Engineering at the Indian Institute of Technology, Bombay in 1985 and his Ph.D. from the University of California, Berkeley in 1989. -
Ali Mani
Associate Professor of Mechanical Engineering
BioAli Mani is an associate professor of Mechanical Engineering at Stanford University. He is a faculty affiliate of the Institute for Computational and Mathematical Engineering at Stanford. He received his PhD in Mechanical Engineering from Stanford in 2009. Prior to joining the faculty in 2011, he was an engineering research associate at Stanford and a senior postdoctoral associate at Massachusetts Institute of Technology in the Department of Chemical Engineering. His research group builds and utilizes large-scale high-fidelity numerical simulations, as well as methods of applied mathematics, to develop quantitative understanding of transport processes that involve strong coupling with fluid flow and commonly involve turbulence or chaos. His teaching includes the undergraduate engineering math classes and graduate courses on fluid mechanics and numerical analysis.
-
Alison Marsden
Douglass M. and Nola Leishman Professor of Cardiovascular Diseases, Professor of Pediatrics (Cardiology) and of Bioengineering and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsThe Cardiovascular Biomechanics Computation Lab at Stanford develops novel computational methods for the study of cardiovascular disease progression, surgical methods, and medical devices. We have a particular interest in pediatric cardiology, and use virtual surgery to design novel surgical concepts for children born with heart defects.
-
Russell Martin
Ph.D. Student in Mechanical Engineering, admitted Autumn 2020
BioPhD student with the Stanford Biomechatronics Lab (biomechatronics.stanford.edu).
-
Michaëlle Ntala Mayalu
Assistant Professor of Mechanical Engineering and, by courtesy, of Bioengineering
BioDr. Michaëlle N. Mayalu is an Assistant Professor of Mechanical Engineering. She received her Ph.D., M.S., and B.S., degrees in Mechanical Engineering at the Massachusetts Institute of Technology. She was a postdoctoral scholar at the California Institute of Technology in the Computing and Mathematical Sciences Department. She was a 2017 California Alliance Postdoctoral Fellowship Program recipient and a 2019 Burroughs Wellcome Fund Postdoctoral Enrichment Program award recipient. She is also a 2023 Hypothesis Fund Grantee.
Dr. Michaëlle N. Mayalu's area of expertise is in mathematical modeling and control theory of synthetic biological and biomedical systems. She is interested in the development of control theoretic tools for understanding, controlling, and predicting biological function at the molecular, cellular, and organismal levels to optimize therapeutic intervention.
She is the director of the Mayalu Lab whose research objective is to investigate how to optimize biomedical therapeutic designs using theoretical and computational approaches coupled with experiments. Initial project concepts include: i) theoretical and experimental design of bacterial "microrobots" for preemptive and targeted therapeutic intervention, ii) system-level multi-scale modeling of gut associated skin disorders for virtual evaluation and optimization of therapy, iii) theoretical and experimental design of "microrobotic" swarms of engineered bacteria with sophisticated centralized and decentralized control schemes to explore possible mechanisms of pattern formation. The experimental projects in the Mayalu Lab utilize established techniques borrowed from the field of synthetic biology to develop synthetic genetic circuits in E. coli to make bacterial "microrobots". Ultimately the Mayalu Lab aims to develop accurate and efficient modeling frameworks that incorporate computation, dynamical systems, and control theory that will become more widespread and impactful in the design of electro-mechanical and biological therapeutic machines. -
Beverley J McKeon
Professor of Mechanical Engineering
BioBeverley McKeon is Professor of Mechanical Engineering at Stanford University. Previously she was the Theodore von Karman Professor of Aeronautics at the Graduate Aerospace Laboratories at Caltech (GALCIT) and a former Deputy Chair of the Division of Engineering and Applied Science. She received M.A. and M.Eng. degrees from the University of Cambridge and a Ph.D. in Mechanical and Aerospace Engineering from Princeton University. Her research interests include interdisciplinary approaches to manipulation of boundary layer flows using morphing surfaces, fundamental experimental investigations of wall turbulence at high Reynolds number, the development of resolvent analysis for modeling turbulent flows, and assimilation of experimental data for efficient low-order flow modeling. McKeon was the recipient of a Vannevar Bush Faculty Fellowship from the DoD in 2017, a Presidential Early Career Award (PECASE) in 2009 and an NSF CAREER Award in 2008, and is a Fellow of the APS and AIAA. She currently serves as co-Lead Editor of Phys. Rev. Fluids and on the editorial board of the Annual Review of Fluid Mechanics, and is past Editor-in-Chief of Experimental Thermal and Fluid Science. She is the Past Chair of the US National Committee on Theoretical and Applied Mechanics and the APS representative.
-
Luke Min
Ph.D. Student in Mechanical Engineering, admitted Autumn 2023
BioLuke Min is a highly motivated Ph.D. student in Mechanical Engineering at Stanford University, set to embark on his academic journey in September 2023. Before joining Stanford, Luke delved into the cutting-edge research field of solid oxide co-electrolysis cell systems, investigating their thermodynamics and thermal integration. Luke authored multiple research papers published in prestigious journals, showcasing his expertise and contributions to the field of energy conversion. His dedication and ingenuity were recognized with awards such as the Best Poster Award at the 6th Asian SOFC Symposium and Exhibition and the Best Academic Thesis Award from the Korean Society of Mechanical Engineering Thermal Engineering Division. Luke's passion lies in exploring the fundamental principles of thermodynamics at the microscale and applying his knowledge to develop efficient and affordable renewable energy systems. Luke aims to make a lasting impact on the global energy landscape by advancing clean and sustainable energy technologies.
-
Shahab Mirjalili
Physical Science Research Scientist
Current Research and Scholarly InterestsBroadly, my research lies in the intersection of fluid mechanics, scientific computing, and machine learning. My work aims to develop and use computational methods to provide a predictive understanding of complex flow problems, including those involving multi-physics couplings and multiphase dynamics across a wide range of scales and Reynolds numbers. In this vein, I develop physically consistent models, robust numerical schemes, and high-performance computing (HPC) software that enable high-fidelity simulations of flows involving complex multi-physics effects. These developments build upon my novel work on modeling multiphase flows and my high-performance multiphase, multi-physics software. In addition to simulations, I use asymptotic analyses and machine learning (ML) to construct reduced-order models (ROMs) that can be used for engineering analysis, control, design, and especially optimization. I am interested in a wide range of applications involving impactful problems. In particular, I am passionate about improving the predictive understanding of multiphase flows in:
- Propulsion and energy conversion/storage
- Additive manufacturing processes
- Biophysical systems
- Environmental flows -
Reginald Mitchell
Professor of Mechanical Engineering, Emeritus
BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.
Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.
Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department. -
Paul Mitiguy
Adjunct Professor
BioFrom Milton MA and LaSalette, Paul did his undergraduate work at Tufts University and his mechanical engineering graduate work (Ph.D) at Stanford under Thomas Kane.
As a young adult, Paul worked summers landscaping, farming, and construction, then worked at MIT Lincoln Laboratory, NASA Ames, and MSC.Software, was a consulting editor for McGraw-Hill (mechanics), and has been a consultant for the software, robotics, biotechnology, energy, automotive, and mechanical/aerospace industries.
He developed force/motion software used by more than 12 million people worldwide and translated into 11 spoken languages. These software applications include Interactive Physics, Working Model 2D/3D, MSC.visualNastran 4D (now SimWise), NIH Simbody/OpenSim, and the symbolic manipulators Autolev/MotionGenesis.
Paul currently works on Drake, open-source software developed by TRI (Toyota Research Institute) to simulate robots and autonomous vehicles. In his role as Lead TRI/Stanford Liaison for SAIL (Toyota's Center for AI Research at Stanford), he facilitates research between TRI and Stanford.
At Stanford, Paul greatly enjoys working with students and teaches mechanics (physics/engineering), controls/vibrations, and advanced dynamics & computation/simulation. He has written several books on dynamics, computation, and control (broadly adopted by universities and professionals).
Paul is highly appreciative of support from Stanford alumni/CEO Dave Baszucki who developed internationally acclaimed physics, engineering, and gaming/educational software, including Interactive Physics, Working Model, MSC.visualNastran, and Roblox.
He is very grateful to students, co-instructors (TAs), faculty, and staff. -
Parviz Moin
Franklin P. and Caroline M. Johnson Professor in the School of Engineering
On Leave from 10/01/2023 To 06/30/2024BioMoin is the founding director of the Center for Turbulence Research. Established in 1987 as a research consortium between NASA and Stanford, Center for Turbulence Research is devoted to fundamental studies of turbulent flows. Center of Turbulence Research is widely recognized as the international focal point for turbulence research, attracting diverse groups of researchers from engineering, mathematics and physics. He was the founding director of the Institute for Computational and Mathematical Engineering at Stanford.
Professor Moin pioneered the use of direct and Large Eddy Simulation techniques for the study of turbulence physics, control and modelling concepts and has written widely on the structure of turbulent shear flows. His current interests include: interaction of turbulent flows and shock waves, aerodynamic noise, hypersonic flows, propulsion, computational science, flow control, large eddy simulation. He is a co- Editor of the Annual Review of Fluid Mechanics and Associate Editor of Journal of Computational Physics, and on the editorial board of Flow. -
Carol B. Muller
Adjunct Lecturer, Mechanical Engineering - Design
BioAs Executive Director of WISE Ventures, Carol Muller joined with individuals and organizations at Stanford to amplify the impact of programs, research, and other projects to advance equity in science, technology, engineering, and mathematics (STEM) fields, and worked collaboratively to enhance existing and establish new initiatives to meet needs aligned with this mission for Stanford University, from within the Office of Faculty Development, Diversity & Engagement and supported also through the Vice Provost for Graduate Education. She also provided executive support for Stanford’s Faculty Women’s Forum. Having retired from these roles in 2021, she continues to serve as an adjunct lecturer in the Department of Mechanical Engineering.
Coupling leadership experience across a wide range of responsibilities in higher education with entrepreneurial skills honed through her work in engineering education, Carol B. Muller founded MentorNet in 1997, a nonprofit online global mentoring network supporting diversity in science and engineering, serving as its chief executive until 2008. Her prior work included service as consulting professor of mechanical engineering at Stanford University, as associate dean for administration at Thayer School of Engineering at Dartmouth College (where she co-founded the Dartmouth Women in Science Project and the Dartmouth Project for Teaching Engineering Problem-Solving), and as department manager for Stanford’s Electrical Engineering department.
A Fellow of the Association for Women in Science, her work has been recognized with national awards, including the Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring, and the Anita Borg Social Impact Award. She has authored and presented numerous papers, presentations, and workshops, and has created projects, programs, and fellowships developed with funding from private foundations, corporations, and the federal government, contracts, and individuals. She earned a bachelors degree from Dartmouth College and A.M. and Ph.D. degrees in education administration and policy analysis at Stanford University. -
Gregg A. Muragishi
Hourly Researcher Rise Thailand, Mechanical Engineering - Design
Staff, Mechanical Engineering - DesignBioMy research focuses on how individuals interpret and derive meaning from positive and negative cues in the social environment. In particular, I am interested in how subtle gestures of respect can ignite change within an institution to increase belonging, interest, and motivation for underrepresented groups.