School of Engineering

Showing 1-17 of 17 Results

  • Amin Saberi

    Amin Saberi

    Professor of Management Science and Engineering

    BioAmin Saberi is Professor of Management Science and Engineering at Stanford University. He received his B.Sc. from Sharif University of Technology and his Ph.D. from Georgia Institute of Technology in Computer Science. His research interests include algorithms, design and analysis of social networks, and applications. He is a recipient of the Terman Fellowship, Alfred Sloan Fellowship and several best paper awards.
    Amin was the founding CEO and chairman of NovoEd Inc., a social learning environment designed in his research lab and used by universities such as Stanford as well as non-profit and for-profit institutions for offering courses to hundreds of thousands of learners around the world.

  • Maria Sakovsky

    Maria Sakovsky

    Assistant Professor of Aeronautics and Astronautics

    BioMaria Sakovsky's work focuses on the use of shape adaptation to realize space structures with reconfigurable geometry, stiffness, and even non-mechanical performance (ex. electromagnetic, optical). Particular focus is placed on the mechanics of thin fiber reinforced composite structures, the interplay between composite material properties and structural geometry, as well as embedded functionality and actuation of lightweight structures. The work has led to applications in deployable space structures, reconfigurable antennas, and soft robotics.

    Maria Sakovsky received her BSc in Aerospace Engineering from the University of Toronto. Following this, she completed her MSc and PhD in Space Engineering at Caltech, where she developed a deployable satellite antenna based on origami concepts utilizing elastomer composites. She concurrently worked with NASA’s Jet Propulsion Laboratory on developing cryogenically rated thin-​ply composite antennas for deep space missions. For her ongoing research on physically reconfigurable antennas, she was awarded the ETH Zürich postdoctoral fellowship as well as the Innovation Starting Grant.

  • Alberto Salleo

    Alberto Salleo

    Professor of Materials Science and Engineering

    Current Research and Scholarly InterestsNovel materials and processing techniques for large-area and flexible electronic/photonic devices. Polymeric materials for electronics, bioelectronics, and biosensors. Electrochemical devices for neuromorphic computing. Defects and structure/property studies of polymeric semiconductors, nano-structured and amorphous materials in thin films. Advanced characterization techniques for soft matter.

  • Krishna Saraswat

    Krishna Saraswat

    Rickey/Nielsen Professor in the School of Engineering and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsNew and innovative materials, structures, and process technology of semiconductor devices, interconnects for nanoelectronics and solar cells.

  • Michael Saunders

    Michael Saunders

    Professor (Research) of Management Science and Engineering, Emeritus

    BioSaunders develops mathematical methods for solving large-scale constrained optimization problems and large systems of equations. He also implements such methods as general-purpose software to allow their use in many areas of engineering, science, and business. He is co-developer of the large-scale optimizers MINOS, SNOPT, SQOPT, PDCO, the dense QP and NLP solvers LSSOL, QPOPT, NPSOL, and the linear equation solvers SYMMLQ, MINRES, MINRES-QLP, LSQR, LSMR, LSLQ, LNLQ, LSRN, LUSOL.

  • Samuel Seidel

    Samuel Seidel

    Adjunct Professor

    BioSam is the K12 Lab Director of Strategy + Research at the Stanford, and co-author of Creative Hustle (Ten Speed Press, 2022), Changing the Conversation About School Safety (Stanford, 2022), Hip Hop Genius 2.0 (Rowman & Littlefield, 2022), and Hip Hop Genius: Remixing High School Education (Rowman & Littlefield, 2011).
    He speaks internationally about education, race, culture, systems, and design.

    Sam graduated from Brown University with a degree in Education and a teaching certification, was a Visiting Practitioner at Harvard Graduate School of Education, a Scholar-in-Residence at Columbia University's Institute for Urban and Minority Education, and a Community Fellow at the Rhode Island School of Design.

  • Debbie Senesky

    Debbie Senesky

    Associate Professor of Aeronautics and Astronautics, of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy

    BioDebbie G. Senesky is an Associate Professor at Stanford University in the Aeronautics and Astronautics Department and by courtesy, the Electrical Engineering Department. In addition, she is the Principal Investigator of the EXtreme Environment Microsystems Laboratory (XLab). Her research interests include the development of nanomaterials for extreme harsh environments, high-temperature electronics for Venus exploration, and microgravity synthesis of nanomaterials. In the past, she has held positions at GE Sensing (formerly known as NovaSensor), GE Global Research Center, and Hewlett Packard. She received the B.S. degree (2001) in mechanical engineering from the University of Southern California. She received the M.S. degree (2004) and Ph.D. degree (2007) in mechanical engineering from the University of California, Berkeley. Prof. Senesky is the Site Director of nano@stanford. She is currently the co-editor of two technical journals: IEEE Journal of Microelectromechanical Systems and Sensors. In recognition of her research, she received the Emerging Leader Abie Award from in 2018, Early Faculty Career Award from the National Aeronautics and Space Administration (NASA) in 2012, Gabilan Faculty Fellowship Award in 2012, and Sloan Ph.D. Fellowship from the Alfred P. Sloan Foundation in 2004.

    Prof. Senesky's career path and research has been featured on Seeker, People Behind the Science podcast, The Future of Everything radio show,, and NPR's Tell Me More program. More information about Prof. Senesky can be found at and on Instagram (@astrodebs).

  • Eric S.G. Shaqfeh

    Eric S.G. Shaqfeh

    Lester Levi Carter Professor and Professor of Mechanical Engineering

    Current Research and Scholarly InterestsI have over 25 years experience in theoretical and computational research related to complex fluids following my PhD in 1986. This includes work in suspension mechanics of rigid partlcles (rods), solution mechanics of polymers and most recently suspensions of vesicles, capsules and mixtures of these with rigid particles. My research group is internationally known for pioneering work in all these areas.

  • Aaron Sidford

    Aaron Sidford

    Associate Professor of Management Science and Engineering and of Computer Science

    Current Research and Scholarly InterestsMy research interests lie broadly in the optimization, the theory of computation, and the design and analysis of algorithms. I am particularly interested in work at the intersection of continuous optimization, graph theory, numerical linear algebra, and data structures.

  • Hyongsok Tom  Soh

    Hyongsok Tom Soh

    Professor of Radiology (Early Detection), of Electrical Engineering, of Bioengineering and, by courtesy, of Chemical Engineering

    BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.

  • Jenny Suckale

    Jenny Suckale

    Assistant Professor of Geophysics and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioMy research group studies disasters to reduce the risk they pose. We approach this challenge by developing customized mathematical models that can be tested against observational data and are informed by community needs through a scientific co-production process. We intentionally work on extremes across different natural systems rather than focusing on one specific natural system to identify both commonalities in the physical processes driving extremes and in the best practices for mitigating risk at the community level. Our current research priorities include volcanic eruptions, ice-sheet instability, permafrost disintegration, induced seismicity and flood-risk mitigation. I was recently awarded the Presidential Early Career Awards for Scientists and Engineers, the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their independent research careers and the CAREER award from the National Science Foundation.