School of Engineering


Showing 601-650 of 702 Results

  • Robert Sutton

    Robert Sutton

    Professor of Management Science & Engineering, Emeritus

    BioRobert Sutton is Professor of Management Science and Engineering and a Professor of Organizational Behavior (by courtesy) at Stanford. Sutton has been teaching classes on the psychology of business and management at Stanford since 1983. He is co-founder of the Center for Work, Technology and Organization, which he co-directed from 1996 to 2006. He is also co-founder of the Stanford Technology Ventures Program and the Hasso Plattner Institute of Design (which everyone calls “the d school”). Sutton and Stanford Business School's Huggy Rao recently launched the Designing Organizational Change Project, which is hosted by the Stanford Technology Ventures Program

    Sutton studies innovation, leadership, the links between managerial knowledge and organization action, scaling excellence, and workplace dynamics. He has published over 100 articles and chapters on these topics in peer-reviewed journals and the popular press. Sutton’s books include Weird Ideas That Work: 11 ½ Practices for Promoting, Managing, and Sustaining Innovation, The Knowing-Doing Gap: How Smart Firms Turn Knowledge into Action (with Jeffrey Pfeffer), and Hard Facts, Dangerous Half-Truths, and Total Nonsense: Profiting from Evidence-Based Management (with Jeffrey Pfeffer). The No Asshole Rule: Building a Civilized Workplace and Surviving One That Isn’t and Good Boss, Bad Boss: How to Be the Best…. and Survive the Worst are both New York Times and Wall Street Journal bestsellers. His last book, Scaling-Up Excellence: Getting to More without Settling for Less (with Huggy Rao), was published in 2014 and is a Wall Street Journal and Publisher’s Weekly bestseller. Sutton's next book, The Asshole Survival Guide: How to Deal With People Who Treat You Like Dirt, will be published in September of 2017.

    Professor Sutton’s honors include the award for the best paper published in the Academy of Management Journal in 1989, the Eugene L. Grant Award for Excellence in Teaching, selection by Business 2.0 as a leading “management guru” in 2002, and the award for the best article published in the Academy of Management Review in 2005. Hard Facts, Dangerous Half-Truths, and Total Nonsense was selected as the best business book of 2006 by the Toronto Globe and Mail. Sutton was named as one of 10 “B-School All-Stars” by BusinessWeek , which they described as “professors who are influencing contemporary business thinking far beyond academia.” In 2014, the London Business School honored Sutton with the Sumantra Ghoshal Award for Rigour and Relevance in the Study of Management.

    Sutton is a Fellow at IDEO, a Senior Scientist at Gallup, and academic director of two Stanford executive education programs:Customer-Focused Innovation and the online Stanford Innovation and Entrepreneurship Certificate. His personal website is at www.bobsutton.net and he also blogs at Harvard Business Review and as an “influencer” on LinkedIn. Sutton tweets @work_matters.

  • Yuri Suzuki

    Yuri Suzuki

    Professor of Applied Physics and, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsHer interests are focused on novel ground states and functional properties in condensed matter systems synthesized via atomically precise thin film deposition techniques with a recent emphasis has been on highly correlated electronic systems:
    • Emergent interfacial electronic & magnetic phenomena through complex oxide heteroepitaxy
    • Low dimensional electron gas systems
    • Spin current generation, propagation and control in complex oxide-based ferromagnets
    • Multifunctional behavior in complex oxide thin films and heterostructures

  • James Swartz

    James Swartz

    James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering

    Current Research and Scholarly InterestsProgram Overview

    The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
    Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
    To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
    To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
    More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances.

  • James Sweeney

    James Sweeney

    Professor of Management Science & Engineering, Senior Fellow at the Stanford Institute for Economic Policy Research, at the Precourt Institute for Energy and, by courtesy, at the Hoover Institution

    Current Research and Scholarly InterestsDeterminants of energy efficiency opportunities, barriers, and policy options. Emphasis on behavioral issues, including personal, corporate, or organizational. Behavior may be motivated by economic incentives, social, or cultural factors, or more generally, by a combination of these factors. Systems analysis questions of energy use.

  • Joel Swisher

    Joel Swisher

    Adjunct Professor

    BioJoel N. Swisher, PhD, PE, is Consulting Associate Professor of Civil and Environmental Engineering at Stanford University, where he teaches graduate-level courses on greenhouse gas (GHG) mitigation (covering technical and business strategies to manage GHG risks) and electric utility planning methods (covering supply and demand-side resources, resource integration and expansion planning). His current research at Stanford addresses the integration of plug-in vehicles with the power grid and the barriers and synergies related to metering, tariffs, load management, customer incentives, and charging infrastructure.

    Dr. Swisher is also an independent consultant with over 30 years experience in research and consulting on many aspects of clean energy technology. He is an expert in energy efficiency technology and policy, carbon offsets and climate change mitigation, and electric utility resource planning and economics. He has consulted with numerous utilities, manufacturers and technology companies on resource planning, energy efficiency, vehicle electrification and clean energy deployment strategies. He has also helped consumer-oriented firms design strategies to expand simple cost-saving energy investment programs into brand-building corporate sustainability campaigns.

    Dr. Swisher is a thought leader in several areas of clean energy technology and business strategy. As Director of Technical Services and CTO for Camco International, Dr. Swisher helped develop carbon offset projects in reforestation, agriculture, renewable energy and building energy efficiency, and he has authored emission inventories, baseline studies and monitoring and verification plans for multilateral banks and private offset buyers. Starting in 1989, Dr. Swisher performed seminal research on carbon offset baselines and technical and economic analysis of carbon offsets in the energy and land-use sectors.

    Dr. Swisher was managing director of research and consulting at Rocky Mountain Institute (RMI), where he led RMI’s consulting team in work for numerous high-profile clients, including electric utilities and producers of goods ranging from semiconductor chips to potato chips. At RMI, he created the concept of the Smart Garage, which explores the energy system synergies in which vehicle electrification helps enable zero-emission vehicles and a cleaner power grid. He led an RMI team that convened an industrial consortium (including Alcoa, Johnson Controls, Google, etc.) to develop a new, lightweight, plug-in hybrid vehicle platform for Class 2 truck fleet applications. Collaborating with the design firm IDEO to conduct interdisciplinary design workshops, the RMI team initiated a working design to attract funding and move toward production, which proceeded as a spin-off company, Bright Automotive in Indiana.

    Dr. Swisher holds a Ph.D. in Energy and Environmental Engineering from Stanford University. He is a registered Professional Engineer and speaks five languages. He is author of over 100 professional publications including The New Business Climate: A Guide to Lower Carbon Emissions and Better Business Performance and a bilingual (English and Portuguese) textbook on energy efficiency program design and evaluation and integrated energy resource planning.

  • Li-Yang Tan

    Li-Yang Tan

    Assistant Professor of Computer Science

    Current Research and Scholarly InterestsTheoretical computer science, with an emphasis on complexity theory

  • Sindy Tang

    Sindy Tang

    Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology and of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsThe long-term goal of Dr. Tang's research program is to harness mass transport in microfluidic systems to accelerate precision medicine and material design for a future with better health and environmental sustainability.

    Current research areas include: (I) Physics of droplets in microfluidic systems, (II) Interfacial mass transport and self-assembly, and (III) Applications in food allergy, single-cell wound repair, and the bottom-up construction of synthetic cell and tissues in close collaboration with clinicians and biochemists at the Stanford School of Medicine, UCSF, and University of Michigan.

    For details see https://web.stanford.edu/group/tanglab/

  • William Abraham Tarpeh

    William Abraham Tarpeh

    Assistant Professor of Chemical Engineering, by courtesy, of Civil and Environmental Engineering and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioReimagining liquid waste streams as resources can lead to recovery of valuable products and more efficient, less costly approaches to reducing harmful discharges to the environment. Pollutants in effluent streams can be captured and used as valuable inputs to other processes. For example, municipal wastewater contains resources like energy, water, nutrients, and metals. The Tarpeh Lab develops and evaluates novel approaches to resource recovery from “waste” waters at several synergistic scales: molecular mechanisms of chemical transport and transformation; novel unit processes that increase resource efficiency; and systems-level assessments that identify optimization opportunities. We employ understanding of electrochemistry, separations, thermodynamics, kinetics, and reactor design to preferentially recover resources from waste. We leverage these molecular-scale insights to increase the sustainability of engineered processes in terms of energy, environmental impact, and cost.

  • Clyde Tatum

    Clyde Tatum

    Obayashi Professor in the School of Engineering, Emeritus

    BioTatum's teaching interests are construction engineering and technical construction. His research focuses on construction process knowledge and integration and innovation in construction.

  • Hamdi Tchelepi

    Hamdi Tchelepi

    Professor of Energy Science Engineering and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsCurrent research activities: (1) model and simulate unstable miscible and immiscible fluid flow in heterogeneous porous media, (2) develop multiscale numerical solution algorithms for coupled mechanics and multiphase fluid flow in large-scale subsurface formations, and (3) develop stochastic solution methods that quantify the uncertainty associated with predictions of fluid-structure dynamics in porous media.

  • Hawa Racine Thiam

    Hawa Racine Thiam

    Assistant Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsCellular Biophysical Mechanisms of Innate Immune Cells Functions

  • Leif Thomas

    Leif Thomas

    Professor of Earth System Science and, by courtesy, of Geophysics, of Civil and Environmental Engineering and of Oceans

    Current Research and Scholarly InterestsPhysical oceanography; theory and numerical modeling of the ocean circulation; dynamics of ocean fronts and vortices; upper ocean processes; air-sea interaction.

  • Fouad Tobagi

    Fouad Tobagi

    Professor of Electrical Engineering

    BioTobagi works on network control mechanisms for handling multimedia traffic (voice, video and TCP- based applications) and on the performance assessment of networked multimedia applications using user-perceived quality measures. He also investigates the design of wireless networks, including QoS-based media access control and network resource management, as well as network architectures and infrastructures for the support of mobile users, all meeting the requirements of multimedia traffic. He also investigates the design of metropolitan and wide area networks combining optical and electronic networking technologies, including topological design, capacity provisioning, and adaptive routing.

  • George Toye

    George Toye

    Adjunct Professor

    BioGeorge Toye, Ph.D., P.E., is adjunct professor in Mechanical Engineering at Stanford University.

    While teaching advanced project-based engineering design thinking and STEM-based innovations at the graduate level as part of ME310, he also contributes to research in varied topics in engineering education, and effective globally-distributed team collaborations. As well, he remains active in entrepreneurship and varied advising/consulting work.

    George earned his B.S. and M.S. degrees in Mechanical Engineering from U.C. Berkeley, and Ph.D. in Mechanical Engineering with minor in Electrical Engineering from Stanford University.

    Since 1983, he has enjoyed volunteering annually to organize regional and state-level Mathcounts competitions to promote mathematics education amongst middle-school aged students.

  • Caroline Trippel

    Caroline Trippel

    Assistant Professor of Computer Science and of Electrical Engineering

    BioCaroline Trippel is an Assistant Professor in the Computer Science and Electrical Engineering Departments at Stanford University working in the area of computer architecture. Prior to starting at Stanford, Trippel spent nine months as a Research Scientist at Facebook in the FAIR SysML group. Her work focuses on promoting correctness and security as first-order computer systems design metrics (akin to performance and power). A central theme of her work is leveraging formal methods techniques to design and verify hardware systems in order to ensure that they can provide correctness and security guarantees for the applications they intend to support. Additionally, Trippel has been recently exploring the role of architecture in enabling privacy-preserving machine learning, the role of machine learning in hardware systems optimizations, particularly in the context of neural recommendation, and opportunities for improving datacenter and at-scale machine learning reliability.

    Trippel's research has influenced the design of the RISC-V ISA memory consistency model both via her formal analysis of its draft specification and her subsequent participation in the RISC-V Memory Model Task Group. Additionally, her work produced a novel methodology and tool that synthesized two new variants of the now-famous Meltdown and Spectre attacks.

    Trippel's research has been recognized with IEEE Top Picks distinctions, the 2020 ACM SIGARCH/IEEE CS TCCA Outstanding Dissertation Award, and the 2020 CGS/ProQuest® Distinguished Dissertation Award in Mathematics, Physical Sciences, & Engineering. She was also awarded an NVIDIA Graduate Fellowship (2017-2018) and selected to attend the 2018 MIT Rising Stars in EECS Workshop. Trippel completed her PhD in Computer Science at Princeton University and her BS in Computer Engineering at Purdue University.

  • Nick Troccoli

    Nick Troccoli

    Lecturer

    BioNick Troccoli is a Lecturer in the Stanford Computer Science Department. He started as a full-time lecturer at Stanford in Fall 2018, after graduating from Stanford in June 2018 with Bachelor's and Master's Degrees in Computer Science. He has taught CS106X, CS107, CS110 and CS111. In 2022, he was named to the Tau Beta Pi Teaching Honor Roll. During his undergraduate career, he specialized in Systems, and during his graduate career he specialized in Artificial Intelligence. He was heavily involved in teaching as both an undergraduate and graduate student; he was an undergraduate Section Leader in the CS 198 Section Leading Program, a graduate CA (Course Assistant) for CS 181, the Head TA for CS 106A and CS 106B, and the summer 2017 instructor for CS 106A. In 2017 he was awarded the Forsythe Teaching Award and the Centennial TA Award for excellence in teaching.

  • Stephen Tsai

    Stephen Tsai

    Professor (Research) of Aeronautics and Astronautics, Emeritus

    BioProfessor Tsai's research interest is in the development of design methodology of composite materials and structures. As an emerging technology, composite materials offer unique performances for structures that combine light weight with durability. Keys to the successful utilization of composite materials are predictability in performance and cost effective design of anisotropic, laminated structures. Current emphasis is placed on the understanding of failure modes, and computer simulation for design and cost estimation.

  • Edison Tse

    Edison Tse

    Associate Professor of Management Science and Engineering

    BioProfessor Edison Tse received his BS, MS, and Ph.D. in Electrical Engineering from Massachusetts Institute of Technology. He is the Director of Asia Center of Management Science and Engineering, which has the charter of developing executive training programs for executives in Asian enterprises, conducting research on development of the emerging economy in Asia and establishing research affiliations with Asian enterprises, with a special focus in Greater China: China, Hong Kong, and Taiwan.
    In 1973, he received the prestigious Donald Eckman Award from the American Automatic Control Council in recognition of his outstanding contribution in the field of Automatic Control. He had served as an Associate Editor of the IEEE Transactions of Automatic Control, and a co-editor of the Journal of Economic Dynamics and Control, which he co-founded.
    Professor Tse has done research in system and control engineering, economic dynamics and control, computer integrated systems to support fishery management policy decisions, management and control of manufacturing enterprise, and industrial competitive analysis and product development. Tse developed a framework for analyzing dynamic competitive strategy that would shape the formation of an ecosystem supporting a value proposition. Within such a framework, he developed dynamic strategies for firms entering an emerging market, latecomers entering a matured market, and firms managing transformation. Using this framework, he developed a new theory on the business transformation of a company and the economic transformation of a developing economy. He applied his theory to explain China’s rapid growth since 1978, changing from a production economy to an innovation economy. His current research is extending the theory to managing product success, managing inflection point disruptions, sustainable growth strategy in a dynamic changing environment, and industries’ strategy responding to geopolitics disruption. Over the years he has made valuable contributions in the field of engineering, economics, and business creation and expansion. He has published over 180 papers on his research activities.
    From 2004- 2015, he co-directed various Stanford-China programs on regional industry and enterprise transformation that were attended by high level city officials from various cities in China and high level executives from Chinese enterprises. From 2007-2013, he co-directed a Stanford Financial Engineering Certificate Program in Hong Kong that upgrades the quality of managers and traders in the financial institutions in Hong Kong
    He was a co-founder and a Board member of Advanced Decision System (ADS), a technology company with emphasis on AI and advanced decision tools. The company was found in 1979 and later acquired by Booz Allen and Hamilton in 1991. In 1988, Verity was spun off from ADS with AI search engine technology developed in ADS to provide enterprise search software. He was a Board member of Verity representing ADS before Verity went IPO in 1995. From 2007-2010, he was a Board member of KBC Fund Management Co., Ltd.

  • Madeleine Udell

    Madeleine Udell

    Assistant Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsProfessor Udell develops new techniques to accelerate and automate data science,
    with a focus on large-scale optimization and on data preprocessing,
    and with applications in medical informatics, engineering system design, and automated machine learning.

  • Johan Ugander

    Johan Ugander

    Associate Professor of Management Science and Engineering

    BioProfessor Ugander's research develops algorithmic and statistical frameworks for analyzing social networks, social systems, and other large-scale data-rich contexts. He is particularly interested in the challenges of causal inference and experimentation in these complex domains. His work commonly falls at the intersections of graph theory, machine learning, statistics, optimization, and algorithm design.

  • Scott Uhlrich

    Scott Uhlrich

    Research Engineer

    Current Research and Scholarly InterestsExperimental biomechanical analysis of healthy and pathological human movement. Real-time biofeedback to modify motor control and kinematics.

    Musculoskeletal modeling and simulation for estimating unmeasurable quantities during movement, like joint forces in individuals with osteoarthritis. Predictive musculoskeletal simulations to design rehabilitation interventions.

    Computer vision, wearable sensing, and machine learning to develop tools that democratize biomechanical analysis and translate biomechanical interventions into clinical practice.

    Quantitative MRI for analyzing the effect of non-surgical treatments for osteoarthritis on cartilage health. PET-MRI for analyzing relationships between the mechanical loading of tissue metabolic activity.

  • Jeffrey Ullman

    Jeffrey Ullman

    Stanford Warren Ascherman Professor of Engineering , Emeritus

    BioJeff Ullman is the Stanford W. Ascherman Professor of Engineering
    (Emeritus) in the Department of Computer Science at Stanford and CEO
    of Gradiance Corp. He received the B.S. degree from Columbia
    University in 1963 and the PhD from Princeton in 1966. Prior to his
    appointment at Stanford in 1979, he was a member of the technical
    staff of Bell Laboratories from
    1966-1969, and on the faculty of Princeton University between
    1969 and 1979. From 1990-1994, he was chair of the Stanford Computer
    Science Department. Ullman was elected to the National Academy of
    Engineering in 1989, the American Academy of Arts and Sciences in
    2012, and has held Guggenheim and Einstein Fellowships. He has
    received the Sigmod Contributions Award (1996), the ACM Karl V. Karlstrom
    Outstanding Educator Award (1998), the Knuth Prize (2000),
    the Sigmod E. F. Codd Innovations award (2006), the IEEE von
    Neumann medal (2010), and the NEC C&C Foundation Prize (2017).
    He is the author of 16 books, including books
    on database systems, compilers, automata theory, and algorithms.

  • Camille Utterback

    Camille Utterback

    Associate Professor of Art and Art History and, by courtesy, of Computer Science

    BioCamille Utterback is an internationally acclaimed artist whose interactive installations and reactive sculptures engage participants in a dynamic process of kinesthetic discovery and play. Utterback’s work explores the aesthetic and experiential possibilities of linking computational systems to human movement and gesture in layered and often humorous ways. Her work focuses attention on the continued relevance and richness of the body in our increasingly mediated world.

    Her work has been exhibited at galleries, festivals, and museums internationally, including The Frist Center for Visual Arts, Nashville, TN; The Orange County Museum of Art, Newport Beach, CA; ZERO1 The Art & Technology Network, San Jose, CA; The New Museum of Contemporary Art, The American Museum of the Moving Image, New York; The NTT InterCommunication Center, Tokyo; The Seoul Metropolitan Museum of Art; The Netherlands Institute for Media Art; The Taipei Museum of Contemporary Art; The Center for Contemporary Art, Kiev, Ukraine; and the Ars Electronica Center, Austria. Utterback’s work is in private and public collections including Hewlett Packard, Itaú Cultural Institute in São Paolo, Brazil, and La Caixa Foundation in Barcelona, Spain.

    Awards and honors include a MacArthur Foundation Fellowship (2009), a Transmediale International Media Art Festival Award (2005), a Rockefeller Foundation New Media Fellowship (2002) and a commission from the Whitney Museum for the CODeDOC project on their ArtPort website (2002). Utterback holds a US patent for a video tracking system she developed while working as a research fellow at New York University (2004). Her work has been featured in The New York Times (2010, 2009, 2003, 2002, 2001), Art in America (October, 2004), Wired Magazine (February 2004), ARTnews (2001) and many other publications. It is also included in Thames & Hudson’s World of Art – Digital Art book (2003) by Christiane Paul.

    Recent public commissions include works for the Liberty Mutual Group, the FOR-SITE Foundation, The Sacramento Airport, The City of San Jose, California, The City of Fontana, California, and the City of St. Louis Park, Minnesota. Other commissions include projects for The American Museum of Natural History in New York, The Pittsburgh Children’s Museum, The Manhattan Children’s Museum, Herman Miller, Shiseido Cosmetics, and other private corporations.

    Utterback is currently an Assistant Professor in the Art and Art History Department at Stanford University. She holds a BA in Art from Williams College, and a Masters degree from The Interactive Telecommunications Program at New York University’s Tisch School of the Arts. She currently lives and works in San Francisco.

  • Melissa Valentine

    Melissa Valentine

    Associate Professor of Management Science and Engineering

    Current Research and Scholarly InterestsAs societies develop and adopt new technologies, they fundamentally change how work is organized. The intertwined relationship between technology and organizing has played out time and again, and scholars predict that new internet and data analytic technologies will spur disruptive transformations to work and organizing.

    These changes are already well-documented in the construction of new market arrangements by companies such as Upwork and TaskRabbit, which defined new categories of “gig workers.” Yet less is known about how internet and data analytic technologies are transforming the design of large, complex organizations, which confront and solve much different coordination problems than gig platform companies.

    Questions related to the structuring of work in bureaucratic organizations have been explored for over a century in the industrial engineering and organizational design fields. Some of these concepts are now so commonplace as to be taken for granted. Yet there was a time when researchers, workers, managers, and policymakers defined and constructed concepts including jobs, careers, teams, managers, or functions.

    My research program argues that some of these fundamental concepts need to be revisited in light of advances in internet and data analytic technologies, which are changing how work is divided and integrated in organizations and broader societies. I study how our prior notions of jobs, teams, departments, and bureaucracy itself are evolving in the age of crowdsourcing, algorithms, and increasing technical specialization. In particular, my research is untangling how data analytic technologies and hyper-specialization shape the division and integration of labor in complex, collaborative production efforts characteristic of organizations.

  • Gregory Valiant

    Gregory Valiant

    Associate Professor of Computer Science

    Current Research and Scholarly InterestsMy primary research interests lie at the intersection of algorithms, learning, applied probability, and statistics. I am particularly interested in understanding the algorithmic and information theoretic possibilities and limitations for many fundamental information extraction tasks that underly real-world machine learning and data-centric applications.

  • Benjamin Van Roy

    Benjamin Van Roy

    Professor of Electrical Engineering, of Management Science and Engineering

    BioBenjamin Van Roy is a Professor at Stanford University, where he has served on the faculty since 1998. His current research focuses on reinforcement learning. Beyond academia, he leads a DeepMind Research team in Mountain View, and has also led research programs at Unica (acquired by IBM), Enuvis (acquired by SiRF), and Morgan Stanley.

    He is a Fellow of INFORMS and IEEE and has served on the editorial boards of Machine Learning, Mathematics of Operations Research, for which he co-edited the Learning Theory Area, Operations Research, for which he edited the Financial Engineering Area, and the INFORMS Journal on Optimization. He received the SB in Computer Science and Engineering and the SM and PhD in Electrical Engineering and Computer Science, all from MIT, where his doctoral research was advised by John N. Tstitsiklis. He has been a recipient of the MIT George C. Newton Undergraduate Laboratory Project Award, the MIT Morris J. Levin Memorial Master's Thesis Award, the MIT George M. Sprowls Doctoral Dissertation Award, the National Science Foundation CAREER Award, the Stanford Tau Beta Pi Award for Excellence in Undergraduate Teaching, the Management Science and Engineering Department's Graduate Teaching Award, and the Lanchester Prize. He was the plenary speaker at the 2019 Allerton Conference on Communications, Control, and Computing. He has held visiting positions as the Wolfgang and Helga Gaul Visiting Professor at the University of Karlsruhe, the Chin Sophonpanich Foundation Professor and the InTouch Professor at Chulalongkorn University, a Visiting Professor at the National University of Singapore, and a Visiting Professor at the Chinese University of Hong Kong, Shenzhen.

  • Andras Vasy

    Andras Vasy

    Robert Grimmett Professor of Mathematics

    Current Research and Scholarly InterestsMy research concentrates on topics in two broad areas of applications of microlocal analysis in which, partly with collaborators, I introduced new ideas in recent years: non-elliptic linear and non-linear partial differential equations (PDE), typically concerning wave propagation or other related phenomena, and inverse problems for X-ray type transforms along geodesics and related problems for determining the metric tensor from boundary measurements.

  • Ross Daniel Venook

    Ross Daniel Venook

    Senior Lecturer of Bioengineering

    BioRoss is a Senior Lecturer in the Bioengineering department and he is the Associate Director for Engineering at the Stanford Byers Center for Biodesign.

    Ross primarily co-leads undergraduate laboratory courses at Stanford—an instrumentation lab (BIOE123) and an open-ended capstone design lab sequence (BIOE141A/B)—and he supports other courses and runs hands-on workshops in the areas of prototyping and systems engineering related to medical device innovation. He enjoys the unique challenges and constraints offered by biomedical engineering projects, and he delights in the opportunity for collaborative learning in a problem-solving environment.

    An Electrical Engineer by training (Stanford BS, MS, PhD), Ross’ graduate work focused on building and applying new types of MRI hardware for interventional and device-related uses. Following a Biodesign Innovation fellowship, Ross helped to start the MRI safety program at Boston Scientific Neuromodulation, where he worked for 15 years to enable safe MRI access for patients with implanted medical devices--including collaboration across the MRI safety community to create and improve international standards.

  • Jelena Vuckovic

    Jelena Vuckovic

    Jensen Huang Professor of Global Leadership, Professor of Electrical Engineering and, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsJelena Vuckovic’s research interests are broadly in the areas of nanophotonics, quantum and nonlinear optics. Her lab develops semiconductor-based photonic chip-scale systems with goals to probe new regimes of light-matter interaction, as well as to enable platforms for future classical and quantum information processing technologies. She also works on transforming conventional photonics with the concept of inverse design, where optimal photonic devices are designed from scratch using computer algorithms with little to no human input. Her current projects include quantum and nonlinear optics, cavity QED, and quantum information processing with color centers in diamond and in silicon carbide, heterogeneously integrated chip-scale photonic systems, and on-chip laser driven particle accelerators.

  • Keiko Waki

    Keiko Waki

    Visiting Associate Professor, Materials Science and Engineering

    BioKeiko Waki, as an associate professor of Tokyo Institute of Technology (TIT) in Japan, has worked extensively with her group on controlling the defects of carbon nanotubes and nano materials for integrating new materials into emerging technologies in the field of fuel cells and solar cells. Now, she is working with Prof. Dauskardt's group in Stanford Materials Science and Engineering on the plasma-assisted film processing for various device technologies as a visiting associate professor.

  • Ken Waldron

    Ken Waldron

    Professor (Research) of Mechanical Engineering, Emeritus

    BioKenneth J. Waldron is Professor of Mechanical and Mechatronic Engineering at UTS. He is also Professor Emeritus from the Design Group in the Department of Mechanical Engineering of Stanford University. He holds bachelors and masters degrees from the University of Sydney, and PhD from Stanford. He works in machine design, and design methodology with a particular focus on robotic and mechatronic systems.

  • Todd Walter

    Todd Walter

    Professor (Research) of Aeronautics and Astronautics

    Current Research and Scholarly InterestsHigh integrity satellite navigation for guiding aircraft, including satellite based augmentation systems (SBAS) and advanced receiver autonomous integrity monitoring (ARAIM).

  • Brian A. Wandell

    Brian A. Wandell

    Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and of Education

    Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes. Image systems simulations of optics and sensors and image processing. Data and computation management for reproducible research.