School of Medicine
Showing 1-47 of 47 Results
-
Oscar J. Abilez
Senior Scientist, Cardiothoracic Surgery - Pediatric Cardiac Surgery
Current Research and Scholarly InterestsDr. Abilez' interests are aimed at elucidating how various biophysical and biochemical perturbations regulate early cardiovascular development across time and length scales that span several orders of magnitude, using human pluripotent stem cells as a model system.
-
Julia Abitbol
Postdoctoral Scholar, Otolaryngology - Head & Neck Surgery
Current Research and Scholarly InterestsMy research interests are to identify genes that may enhance cochlear regeneration in an effort to treat patients with hearing loss.
-
Marwa Abu El Haija
Clinical Associate Professor, Pediatrics - Gastroenterology
BioI am a pediatric gastroenterologist with clinical and research interest in childhood obesity. I believe that each patient is unique in their disease and background, that is why they deserve to be approached in an individualized way. I aspire to discover what's unknown about the pathophysiologic causes of obesity, and the mechanisms of which treatments work. My clinical and research interests in pediatric obesity found home within Stanford's distinctive position academically, medically and geographically.
-
Monther Abu-Remaileh
Assistant Professor of Chemical Engineering and of Genetics
Current Research and Scholarly InterestsWe study the role of the lysosome in metabolic adaptation using subcellular omics approaches, functional genomics and innovative biochemical tools. We apply this knowledge to understand how lysosomal dysfunction leads to human diseases including neurodegeneration, cancer and metabolic syndrome.
-
Peter Acker
Clinical Associate Professor, Emergency Medicine
Current Research and Scholarly InterestsMy research and work focus on optimizing the use of health system data to create intelligent and accurate emergency referral systems to ensure vulnerable populations receive the care they require as efficiently as possible. I am interested in increasing our understanding of currently available health infrastructure in resource limited settings, and pairing that knowledge with technology tools to help identify patient's true needs and match those needs with health system capacity in real-time.
-
Maya Adam
Clinical Associate Professor, Pediatrics - Infectious Diseases
BioDr. Adam is the Director of Health Media Innovation and a Clinical Associate Professor in the Department of Pediatrics at Stanford School of Medicine. Her research focuses on measuring the impact of innovative, video-based entertainment-education approaches to global health communication. She produces short, animated films and online courses on topics related to maternal child health, nutrition, mental health and disease prevention. She has designed and produced online educational content for the Stanford School of Medicine for use in their preclinical programs, continuing medical education programs and global health promotion efforts. She is the Faculty Lead for the Global Child Health Media Initiative and Associate Director of the Center for Digital Health at Stanford. She is also the lead instructor of eight massive open online courses reaching more than a million learners around the world. Adam is principal investigator on two randomized-controlled trials investigating the impact of digital global health education interventions on health-promoting behaviors. Her research is conducted in collaboration with the Heidelberg Institute of Global Health in Heidelberg, Germany. She is a Faculty Fellow at the Center for Innovation in Global Health and the author of Food, Love, Family: A Practical Guide to Child Nutrition.
-
Ananta Addala
Assistant Professor of Pediatrics (Endocrinology)
BioDr. Ananta Addala is a pediatric endocrinologist and physician scientist addressing disparities in pediatric type 1 diabetes management and outcomes. As a physician with a background in pediatric endocrinology, epidemiology, and behavioral health, she aims to build an evidence-based approach to addressing T1D disparities by systematically evaluating youth-, family-, provider-, and system-level barriers to optimal diabetes care in youth from low socioeconomic and racial/ethnic minority groups.
To date, her publications have demonstrated that the disparities in pediatric T1D by socioeconomic status are worsening in the US, provider bias against public insurance is common, and public insurance mediated interruptions to diabetes technology adversely impact glycemic outcomes. She has also been leading the efforts to improve justice, equity, diversity, and inclusion in research at Stanford University through her leadership at Stanford Pediatrics Advancing Anti-Racism Coalition and as the co-chair of TrialNet's Underrepresented Minorities Outreach Committee. -
Catherine Aftandilian
Clinical Associate Professor, Pediatrics - Hematology & Oncology
Current Research and Scholarly InterestsI conduct clinical research on the prevention, early diagnosis, and treatment of infectious complications in pediatric patients with leukemia.
-
Lusine Aghajanova, M.D., Ph.D.
Clinical Associate Professor, Obstetrics & Gynecology - Reproductive Endocrinology & Infertility
BioDr. Aghajanova received her medical degree from Yerevan State Medical University in Armenia, followed by residency in obstetrics and gynecology, then completed PhD in Human Implantation at Karolinska Institute, Stockholm, Sweden, followed with embryology training at Karolinska Institute, with an Internship in Austria.
She continued her research as a postdoctoral fellow at the University of California San Francisco.
Subsequently, Dr. Aghajanova completed residency in Obstetrics and Gynecology at Baylor College of Medicine, Houston, Texas and at UC San Francisco. She proceeded then with subspecialty fellowship training in Reproductive Endocrinology and Infertility at UC San Francisco. She is a respected researcher in the field of endometrial receptivity, implantation and endometriosis.
Dr. Aghajanova speaks Russian and Armenian and is very well published with over 50 peer-reviewed publications as well as numerous other oral and poster presentations and is a professional peer-reviewer for over 12 journals.
Dr.Aghajanova enjoys spending time with her husband and children, and traveling. -
Iram Ahmad, MD, MME
Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics
BioDr. Iram Ahmad received her MD from the University of Michigan Medical School. She then completed Otolaryngology residency program at the University of Iowa. At Iowa, she was an NIH- sponsored T32 research resident in the Department of Otolaryngology. During her residency training she also gained expertise in education and graduated with a Master in Medical Education from the University of Iowa Carver College of Medicine. After residency, Dr. Ahmad continued at Iowa for her fellowship in Pediatric Otolaryngology.
Dr. Ahmad is an Assistant Professor of Otolaryngology- Head and Neck Surgery in the Pediatric Division. Her clinical expertise is in Pediatric Otology and hearing loss. She is focused on children with hearing loss, cochlear implantation, cholesteatoma, and general pediatric Otolaryngology. Her research interests are in children with congenital hearing loss and microstructure changes of the brain. -
Raag Airan
Assistant Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Psychiatry and Behavioral Sciences and of Materials Science and Engineering
Current Research and Scholarly InterestsOur goal is to develop and clinically implement new technologies for high-precision and noninvasive intervention upon the nervous system. Every few millimeters of the brain is functionally distinct, and different parts of the brain may have counteracting responses to therapy. To better match our therapies to neuroscience, we develop techniques that allow intervention upon only the right part of the nervous system at the right time, using technologies like focused ultrasound and nanotechnology.
-
Steven R. Alexander, MD
Professor of Pediatrics (Nephrology), Emeritus
Current Research and Scholarly InterestsDialysis, kidney transplantation, continuous renal replacement therapy in pediatric patients; chronic kidney disease in pediatric patients.
-
Ash A. Alizadeh, MD/PhD
Moghadam Family Professor
Current Research and Scholarly InterestsMy research is focused on attaining a better understanding of the initiation, maintenance, and progression of tumors, and their response to current therapies toward improving future treatment strategies. In this effort, I employ tools from functional genomics, computational biology, molecular genetics, and mouse models.
Clinically, I specialize in the care of patients with lymphomas, working on translating our findings in prospective cancer clinical trials. -
Leina Alrabadi
Clinical Associate Professor, Pediatrics - Gastroenterology
BioI enjoy working with a multidisciplinary team to care for patients who have complex medical needs with the aim of giving children a better future. As a clinical researcher, my main focus is on finding improved therapies for autoimmune and cholestatic liver diseases, since an ideal therapy currently does not exist.
-
Russ B. Altman
Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine, of Biomedical Data Science, Senior Fellow at the Stanford Institute for HAI and Professor, by courtesy, of Computer Science
Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/
-
Ruben Alvero, M.D.
Professor of Obstetrics and Gynecology (Reproductive Endocrinology and Infertility)
BioDr. Ruben Alvero is Professor of Obstetrics and Gynecology at Stanford Medical School and is the Division Director of Reproductive Endocrinology and Infertility at the Lucille Packard Children’s Hospital. He is Board Certified in Obstetrics and Gynecology and in Reproductive Endocrinology and Infertility. He is a fellow of the American College of Obstetrics and Gynecology and the American College of Surgeons.
Following undergraduate training at Harvard College (BA, Economics, 1980), Dr. Alvero received his medical degree from the Uniformed Services University of the Health Sciences in Bethesda, Maryland in 1986. He completed his residency in Obstetrics and Gynecology at Walter Reed Army Medical Center (1990) and a fellowship in Reproductive Endocrinology and Infertility at the National Institutes of Health (NIH, 1995).
Dr. Alvero was the Division Director for Infertility Services at the National Naval Medical Center (Bethesda) and Walter Reed Army Medical Center and faculty in the NIH-sponsored fellowship in Reproductive Endocrinology and Infertility. Dr. Alvero remained a reserve Colonel in the U.S. Army Medical Corps until 2012 and during 27 years in the Army was mobilized several times for missions around the world, including service in Iraq, Kuwait, Mongolia, Germany and various locations in the United States.
Dr. Alvero was Professor of Obstetrics and Gynecology and Vice Chair for Education at the University of Colorado Health Sciences Center and the Director of the Assisted Reproductive Technologies, and founding member of the Center for Surgical Innovation. Dr. Alvero was Residency Program Director in Obstetrics and Gynecology at the University of Colorado. He was subsequently Division and Fellowship Director at Brown University.
The Council in Residency Education in Obstetrics and Gynecology awarded him its National Faculty Award for Excellence three times. He has been NIH-funded, most recently as part of the Reproductive Medicine Network.
Dr. Alvero is currently the Vice President of the Society for Reproductive Endocrinology, the national organization of fertility specialists and will take over as President in October 2020.
Dr. Alvero’s clinical interests include IVF, polycystic ovary syndrome, endometriosis and robotic surgery. Dr. Alvero’s research interests include non-invasive evaluation of embryo quality, cost-effectiveness analysis, and the role of critical thinking in medical education. A fluent Spanish-speaker, Dr. Alvero is also dedicated to improving the health of the Latinx community.
Dr. Alvero is happiest on the water, whether sailing or singles rowing. He is also constantly attempting to improve his mastery of Latin American cuisine. Most of all, he loves spending time with his family. -
Cristina Maria Alvira
Associate Professor of Pediatrics (Critical Care)
Current Research and Scholarly InterestsThe overall objective of the Alvira Laboratory is to elucidate the mechanisms that promote postnatal lung development and repair, by focusing on three main scientific goals: (i) identification of the signaling pathways that direct the transition between the saccular and alveolar stages of lung development; (ii) exploration of the interplay between postnatal vascular and alveolar development; and (iii) determination of developmentally regulated pathways that mediate lung repair after injury.
-
Manuel R. Amieva
Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly InterestsMy laboratory studies how bacteria colonize our bodies for long periods of time, and how interactions between bacteria and the epithelial surfaces of the gastrointestinal tract and skin may lead to disease. Epithelial surfaces are the first barrier against infection, but they also where our bodies meet and co-evolve with the microbial world.. Several of our studies have focused on the epithelial junctions as a target for bacterial pathogens. The host epithelium uses its epithelial junctions to form a tight but dynamic barrier with an external surface that is inhospitable to microbial attachment, secretes anti-microbial compounds, and has a rapid rate of self-renewal. The balance in the microbe-epithelial relationship results in silent commensalism or symbiosis; an imbalance results in diseases ranging from acute bacterial invasive disease to chronic ulcers or carcinoma.
Our laboratory has developed novel microscopy applications such as quantitative 3D confocal microscopy, electron microscopy, time-lapse imaging, microinjection and micromanipulation to visualize the interaction of pathogens with epithelial cells in culture and in animal and human tissues. Many of out studies focus on the gastric pathogen Helicobacter pylori, but we have also expanded our investigations to include the intestinal pathogens Listeria monocytogenes and Salmonella enterica, and the skin pathogen and colonizer Staphylococcus aureus. I believe that elucidating how microbes communicate with and alter our epithelial cells at a molecular level will be important for finding novel therapeutic targets to control mucosal colonization and prevent invasive disease.
Using this perspective, we have uncovered several novel concepts of how bacteria colonize and breach our epithelial surfaces. For example, we discovered that Helicobacter pylori target the intercellular junctions, and in particular that the virulence factor CagA affects junction assembly and cell polarity. This confers H. pylori the ability to extract nutrients and grow directly on the epithelial surface. We also found that these properties of CagA have consequences for cellular transformation of the epithelium. For instance, we showed that H. pylori affect the activity and state of epithelial stem cells in the stomach by colonizing the epithelial surface deep in the gastric glands. This gland-associated population is essential for pathological inflammation and hyperplasia in animal models, and confers significant colonization advantages to the bacteria. Our Listeria research uncovered a new mechanism and site where bacteria can breach the gastrointestinal epithelial barrier to invade. We found that Listeria find their receptor for invasion at sites of epithelial senescence, where the epithelial junctions undergo dynamic turnover. To study Salmonella and H. pylori we have developed a human organoid model to study their interactions with human gut epithelium in vitro. To study Staphylococcus aureus pathogenesis, we have developed methods to visualize infection at the scale of a single bacterial microcolony using an organoid culture system of human keratinocytes and fibroblasts that grow into a 3D skin-equivalent. We recently identified several proteins at the eptithelial junctions as host factors involved in the pathogenesis of one of Staphylococcus aureus major toxins. -
Kanwaljeet S. Anand
Professor of Pediatrics (Pediatric Critical Care) and of Anesthesiology, Perioperative and Pain Medicine
Current Research and Scholarly InterestsDr. Anand is a translational clinical researcher who pioneered research on the endocrine-metabolic stress responses of infants undergoing surgery and developed the first-ever scientific rationale for pain perception in early life. This provided a framework for newer methods of pain assessment, numerous clinical trials of analgesia/anesthesia in newborns, infants and older children. His research focus over the past 30+ years has contributed fundamental knowledge about pediatric pain/stress, long-term effects of pain in early life, management of pain, mechanisms for opioid tolerance and withdrawal. Current projects in his laboratory are focused on developing biomarkers for repetitive pain/stress in critically ill children and the mechanisms underlying sedative/anesthetic neurotoxicity in the immature brain. He designed and directed many randomized clinical trials (RCT), including the largest-ever pediatric analgesia trial studying morphine therapy in ventilated preterm neonates. He has extensive experience in clinical and translational research from participating in collaborative networks funded by NIMH, NINDS, or NICHD, a track-record of excellent collaboration across multiple disciplines, while achieving success with large research teams like the Collaborative Pediatric Critical Care Research Network (CPCCRN). He played a leadership roles in CANDLE (Condition Affecting Neuro-Development & Learning in Early infancy) and other activities of the Urban Child Institute and UT Neuroscience Institute. More recently, he led the NeoOpioid Consortium funded by the European Commission, which collected data from 243 NICUs in 18 European countries.
-
Thomas Anthony ("Tony") Anderson
Clinical Professor, Anesthesiology, Perioperative and Pain Medicine
Current Research and Scholarly InterestsMy lab's research focuses on two areas:
1. Focused ultrasound for peripheral nervous system modulation- We are interested in the potential of focused ultrasound to modulate peripheral nerves and improve both acute and chronic pain.
2. Pediatric perioperative outcomes- Our goals are to understand A) how various perioperative pain management strategies affect outcomes in children who undergo surgery and B) whether disparities in the perioperative pain management of children occur. -
Jason Andrews
Professor of Medicine (Infectious Diseases) and, by courtesy, of Epidemology
Current Research and Scholarly InterestsOur laboratory aims to develop and test innovative approaches to the diagnosis, treatment and control of infectious diseases in resource-limited settings. We draw upon multiple fields including mathematical modeling, microbial genetics, field epidemiology, statistical inference and biodesign to work on challenging problems in infectious diseases, with an emphasis on tuberculosis and tropical diseases.
-
Michael Angelo
Associate Professor of Pathology
BioMichael Angelo, MD PhD is a board-certified pathologist and assistant professor in the department of Pathology at Stanford University School of Medicine. Dr. Angelo is a leader in high dimensional imaging with expertise in tissue homeostasis, tumor immunology, and infectious disease. His lab has pioneered the construction and development of Multiplexed Ion Beam Imaging by time of flight (MIBI-TOF). MIBI-TOF uses secondary ion mass spectrometry and metal-tagged antibodies to achieve rapid, simultaneous imaging of dozens of proteins at subcellular resolution. In recognition of this achievement, Dr. Angelo received the NIH Director’s Early Independence award in 2014. His lab has since used this novel technology to discover previously unknown rule sets governing the spatial organization and cellular composition of immune, stromal, and tumor cells within the tumor microenvironment in triple negative breast cancer. These findings were found to be predictive of single cell expression of several immunotherapy drug targets and of 10-year overall survival. This effort has led to ongoing work aimed at elucidating structural mechanisms in the TME that promote recruitment of cancer associated fibroblasts, tumor associated macrophages, and extracellular matrix remodeling. Dr. Angelo is the recipient of the 2020 DOD Era of Hope Award and a principal investigator on multiple extramural awards from the National Cancer Institute, Breast Cancer Research Foundation, Parker Institute for Cancer Immunotherapy, the Bill and Melinda Gates Foundation, and the Human Biomolecular Atlas (HuBMAP) initiative.
-
Justin P. Annes M.D., Ph.D.
Associate Professor of Medicine (Endocrinology)
On Partial Leave from 05/01/2024 To 02/28/2025Current Research and Scholarly InterestsThe ANNES LABORATORY of Molecular Endocrinology: Leveraging Chemical Biology to Treat Endocrine Disorders
DIABETES
The prevalence of diabetes is increasing at a staggering rate. By the year 2050 an astounding 25% of Americans will be diabetic. The goal of my research is to uncover therapeutic strategies to stymie the ensuing diabetes epidemic. To achieve this goal we have developed a variety of innovate experimental approaches to uncover novel approaches to curing diabetes.
(1) Beta-Cell Regeneration: Diabetes results from either an absolute or relative deficiency in insulin production. Our therapeutic strategy is to stimulate the regeneration of insulin-producing beta-cells to enhance an individual’s insulin secretion capacity. We have developed a unique high-throughput chemical screening platform which we use to identify small molecules that promote beta-cell growth. This work has led to the identification of key molecular pathways (therapeutic targets) and candidate drugs that promote the growth and regeneration of islet beta-cells. Our goal is to utilize these discoveries to treat and prevent diabetes.
(2) The Metabolic Syndrome: A major cause of the diabetes epidemic is the rise in obesity which leads to a cluster of diabetes- and cardiovascular disease-related metabolic abnormalities that shorten life expectancy. These physiologic aberrations are collectively termed the Metabolic Syndrome (MS). My laboratory has developed an original in vivo screening platform t to identify novel hormones that influence the behaviors (excess caloric consumption, deficient exercise and disrupted sleep-wake cycles) and the metabolic abnormalities caused by obesity. We aim to manipulate these hormone levels to prevent the development and detrimental consequences of the MS.
HEREDIATY PARAGAGLIOMA SYNDROME
The Hereditary Paraganglioma Syndrome (hPGL) is a rare genetic cancer syndrome that is most commonly caused by a defect in mitochondrial metabolism. Our goal is to understand how altered cellular metabolism leads to the development of cancer. Although hPGL is uncommon, it serves as an excellent model for the abnormal metabolic behavior displayed by nearly all cancers. Our goal is to develop novel therapeutic strategies that target the abnormal behavior of cancer cells. In the laboratory we have developed hPGL mouse models and use high throughput chemical screening to identify the therapeutic susceptibilities that result from the abnormal metabolic behavior of cancer cells.
As a physician scientist trained in clinical genetics I have developed expertise in hereditary endocrine disorders and devoted my efforts to treating families affected by the hPGL syndrome. By leveraging our laboratory expertise in the hPGL syndrome, our care for individuals who have inherited the hPGL syndrome is at the forefront of medicine. Our goal is to translate our laboratory discoveries to the treatment of affected families. -
Arash Anoshiravani
Clinical Associate Professor, Pediatrics - Adolescent Medicine
Current Research and Scholarly InterestsResearch interests include high-risk youth, adolescent health services, and the juvenile justice system.
-
David Ansel
Clinical Associate Professor, Pediatrics
BioI graduated from UCLA (now Geffen) School of Medicine, did my pediatrics residency at Columbia-Presbyterian in NYC, followed by a clinical fellowship in developmental (what was then called an “ambulatory”) pediatrics at Boston Children’s Hospital. The first 28 years of my career were spent in clinical practice combining both DBP and primary care (the latter focused on serving CSHCN). During those years I was involved in numerous divide-bridging efforts - including programs to coordinate inpatient & outpatient medicine, connect tertiary & primary care, and promote teamwork between pediatricians, psychologists, nurse practitioners, and other community partners. I founded my own solo practice in 1989 and managed its growth to an 8-provider group over the next 25 years. Our practice was a founding member of the PPOC and I served on its board of directors for 6 years. The PPOC is one of the largest pediatric IPA’s in the country, with >200 member providers affiliated with Boston Children's Hospital. Over the years we were involved in groundbreaking QI initiatives including those involving asthma, weight, and ADHD management; medical home; and behavioral health integration with primary care.
I’m now well into my career's “second act” on the clinician-educator track here at Stanford. I'm proud to have piloted our division's primary care initiative (DBPCI) and am now in the process of planning for a second phase thereof, hoping to make improved collaboration between DBP and primary care more available to more patients. I also pioneered the use of telehealth in our division, and then helped guide its sudden widespread adoption by my peers during the COVID-19 crises. Looking forward, I expect what we have learned during the pandemic will inform what we do for DBPCI 2.0. -
Eric Appel
Associate Professor of Materials Science and Engineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Pediatrics (Endocrinology) and of Bioengineering
Current Research and Scholarly InterestsThe underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.
-
Marta Arenas Jal
Postdoctoral Scholar, Bioengineering
BioMarta holds a PhD in pharmaceutical technology and an Executive MBA. She is passionate about healthcare research and innovation and has several years of experience in leading R&D projects within the pharmaceutical industry. Prior to joining Stanford Biodesign, Marta worked at CIMTI which is an accelerator for health startups that supports innovators to develop and implement solutions that improve healthcare quality and patient outcomes.
Throughout her career, she has demonstrated a strong track record of successfully translating research and innovation into real-world impact. She is a curious, creative, and open-minded person who is always seeking to solve complex problems in order to make a positive impact on patients’ lives. In her current role as Innovation Fellow at Stanford Byers Center for Biodesign, she is part of a team working on developing innovative solutions to address unmet needs in healthcare. -
Ronald L. Ariagno
Professor (Clinical) of Pediatrics, Emeritus
Current Research and Scholarly InterestsDevelopmental Physiology and Sudden Infant Death Syndrome Research Laboratory closed in 2008.
Current effort, as Chair of Task Force and neonatal consult at the FDA, is to establish through consensus a culture of investigation and collaboration for all clinical neonatology practices: academic, corporate and community based to maximize the opportunity to participate in research effort needed for the regulatory approval of neonatal therapeutics to improve the outcome of critically ill infants. -
Anna Chen Arroyo
Clinical Associate Professor, Medicine - Pulmonary, Allergy & Critical Care Medicine
BioDr. Arroyo specializes in the treatment of allergic conditions including drug allergy and asthma. She has a special interest in understanding health and healthcare disparities in allergic diseases and how allergies change over a person's lifetime.
-
Steven Artandi, MD, PhD
Laurie Kraus Lacob Director of the Stanford Cancer Institute (SCI), Jerome and Daisy Low Gilbert Professor and Professor of Biochemistry
Current Research and Scholarly InterestsTelomeres are nucleoprotein complexes that protect chromosome ends and shorten with cell division and aging. We are interested in how telomere shortening influences cancer, stem cell function, aging and human disease. Telomerase is a reverse transcriptase that synthesizes telomere repeats and is expressed in stem cells and in cancer. We have found that telomerase also regulates stem cells and we are pursuing the function of telomerase through diverse genetic and biochemical approaches.
-
Ann M. Arvin
Lucile Salter Packard Professor of Pediatrics and Professor of Microbiology and Immunology, Emerita
Current Research and Scholarly InterestsOur laboratory investigates the pathogenesis of varicella zoster virus (VZV) infection, focusing on the functional roles of particular viral gene products in pathogenesis and virus-cell interactions in differentiated human cells in humans and in Scid-hu mouse models of VZV cell tropisms in vivo, and the immunobiology of VZV infections.
-
Euan A. Ashley
Roger and Joelle Burnell Professor of Genomics and Precision Health, Professor of Medicine (Cardiovascular Medicine), of Genetics, of Biomedical Data Science and, by courtesy, of Pathology
Current Research and Scholarly InterestsThe Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve the diagnosis of genetic disease and to personalize the practice of medicine. At the wet bench, we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality in biological pathways and find targets for therapeutic development.
-
Ritu Asija
Clinical Professor, Pediatrics - Cardiology
BioI specialize in providing cardiac critical care to infants, children and adults with congenital heart disease and heart failure. I am the Associate Director for the Pulmonary Artery Reconstruction Program at Stanford, helping to coordinate comprehensive multidisciplinary care for children with severe pulmonary artery abnormalities and right ventricular dysfunction. I was a Faculty Fellow at the Stanford Center for Biodesign in 2019-2020 and continue to work on development of new technologies for the unmet needs of pediatric patients. I have an interest in physician wellness and completed the Wellness Director course through the WellMD Center at Stanford.
-
Themistocles (Tim) Assimes
Associate Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsGenetic Epidemiology, Genetic Determinants of Complex Traits related to Cardiovasular Medicine, Coronary Artery Disease related pathway analyses and integrative genomics, Mendelian randomization studies, risk prediction for major adverse cardiovascular events, cardiovascular medicine related pharmacogenomics, ethnic differences in the determinants of Insulin Mediated Glucose Uptake, pharmacoepidemiology of cardiovascular drugs & outcomes
-
Laura Attardi
Catharine and Howard Avery Professor of the School of Medicine and Professor of Genetics
Current Research and Scholarly InterestsOur research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.
-
Jeffrey Axelrod
Professor of Pathology
Current Research and Scholarly InterestsGenetic and cell biological analyses of signals controlling cell polarity and morphogenesis. Frizzled signaling and cytoskeletal organization.