School of Medicine


Showing 101-150 of 739 Results

  • Glenn M. Chertow

    Glenn M. Chertow

    Norman S. Coplon/Satellite Healthcare Professor of Medicine and Professor, by courtesy, of Epidemiology and Population Health and of Health Policy

    Current Research and Scholarly Interestsclinical epidemiology, health services research, decision sciences, clinical trials in acute and chronic kidney disease

  • Christina F. Chick

    Christina F. Chick

    Instructor, Psychiatry and Behavioral Sciences - Child & Adolescent Psychiatry and Child Development

    Current Research and Scholarly InterestsMy research examines the mechanistic contributions of sleep, cognition and affect to the onset and course of psychiatric disorders across the lifespan. I am particularly interested in adolescence as a period during which changes in circadian rhythm, sleep architecture, and sleep behavior co-occur with neuroendocrine development, psychosocial changes, and the onset of many psychiatric disorders. Given that sleep is a highly treatable target, increasing our understanding of the specific contributions of sleep to psychiatric symptom onset may facilitate the development of targeted interventions to mitigate the course of illness.

  • Allis Chien

    Allis Chien

    Affiliate, Mass Spectrometry Center

    Current Role at StanfordEmeritus Staff:
    Director, Stanford University Mass Spectrometry (SUMS) core resource laboratory
    Staff Director, Stanford School of Medicine Service Centers

  • Wah Chiu

    Wah Chiu

    Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.

  • Valerie Chock

    Valerie Chock

    Professor of Pediatrics (Neonatology) and, by courtesy, of Obstetrics and Gynecology (Maternal Fetal Medicine)

    Current Research and Scholarly InterestsNeurological monitoring in critically ill infants. Altered hemodynamics in neonates, especially in relation to prematurity, congenital heart disease, and central nervous system injury. Determination of the hemodynamic significance and effects of a patent ductus arteriosus in the preterm infant. Utilizing NIRS (near-infrared spectroscopy) and other technologies for improved monitoring in the NICU.

  • Danny Hung-Chieh Chou

    Danny Hung-Chieh Chou

    Associate Professor of Pediatrics (Endocrinology) and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur research program integrates concepts of chemical biology, protein engineering and structure biology to design new therapeutic leads and generate probes to study biological processes. A key focus of our lab is insulin, an essential hormone in our body to reduce blood glucose levels. We generate synthetic libraries of insulin analogs to select for chemical probes, and investigate natural insulin molecules (e.g. from the venom of fish-hunting cone snails!) to develop novel therapeutic candidates. We are especially interested in using chemical and enzymatic synthesis to create novel chemical entities with enhanced properties, and leverage the strong expertise of our collaborators to apply our skill sets in the fields of cancer biology, immunology and pain research. Our ultimate goal is to translate our discovery into therapeutic interventions in human diseases.

  • Daniel Clark, MD, MPH

    Daniel Clark, MD, MPH

    Clinical Assistant Professor, Medicine - Cardiovascular Medicine
    Clinical Assistant Professor, Pediatrics - Cardiology

    BioDr. Clark is a board-certified, fellowship-trained cardiologist with the Adult Congenital Heart Program at Stanford Health Care. He is also a clinical assistant professor with dual appointments in the Division of Cardiovascular Medicine, Department of Medicine and the Division of Cardiology, Department of Pediatrics at Stanford University School of Medicine.

    Dr. Clark specializes in the diagnosis and treatment of adult congenital heart disease (ACHD) and the management of congenital and acquired heart disease in children. His clinical focus involves the combined use of cardiac magnetic resonance (CMR) and other imaging techniques to evaluate patients with known or suspected cardiovascular disease. Dr. Clark’s extensive training and experience with these techniques include multiple fellowships in adult cardiology, cardiovascular imaging, and ACHD.

    Dr. Clark is currently a co-investigator on multiple research studies. During his fellowship, he received a training grant from the National Institutes of Health enabling evaluation of the ability of CMR to diagnose COVID-19-associated heart inflammation among college athletes. He currently uses CMR to assess heart transplant outcomes in donors positive for hepatitis C virus. Dr. Clark also received a research grant from the Adult Congenital Heart Disease Association supporting a randomized, controlled clinical trial of cardiac rehabilitation among patients with Fontan failure.

    Dr. Clark serves as a peer reviewer for multiple prestigious journals, including The New England Journal of Medicine, Circulation, Journal of the American College of Cardiology, and Journal of the American Heart Association (JAHA). He serves on the editorial board for both JAHA and Circulation: Cardiovascular Imaging. He is also a member of numerous professional medical societies, including the American College of Cardiology, the American Heart Association, and the Adult Congenital Heart Association.

  • Shoa L. Clarke, MD, PhD

    Shoa L. Clarke, MD, PhD

    Assistant Professor of Medicine (Stanford Prevention Research Center) and of Pediatrics (Cardiology)

    BioDr. Clarke is a preventive cardiologist and a physician-scientist focused on disease prevention. He earned his undergraduate degree in human biology from the Division of Nutritional Sciences at Cornell University before obtaining his MD and PhD (genetics) from Stanford University School of Medicine. He has completed clinical training in internal medicine (Brigham & Women’s Hospital), pediatrics (Boston Children’s Hospital), and cardiovascular medicine (Stanford Hospital), and he is board certified in all three specialties. His research is focused on 1) understanding complex disease genetics in diverse populations, 2) integrating monogenic and polygenic risk with clinical risk, 3) large-scale phenotyping using the electronic health record and medical images. His clinical practice focuses on identifying risk factors for cardiovascular disease with the goal of promoting health and longevity through evidence-based personalized treatment. He is interested in developing family-centric approaches for the treatment of adults and children carrying genetic risk for disease.

  • William Clusin, MD

    William Clusin, MD

    Associate Professor of Medicine (Cardiovascular Medicine), Emeritus

    Current Research and Scholarly InterestsCardiac action potentials; tissue culture, voltage, clamp technique; role of calcium in ischemia arrhythmias; coronary, artery disease; myocardial infarction.

  • Jennifer R. Cochran

    Jennifer R. Cochran

    Senior Associate Vice Provost for Research, Addie and Al Macovski Professor, Professor of Bioengineering and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology

  • Le Cong

    Le Cong

    Associate Professor of Pathology (Pathology Research) and of Genetics

    Current Research and Scholarly InterestsOur lab develops gene-editing technologies like novel CRISPR systems and large gene insertion techniques for gene&cell therapy. We also leverages these gene-editing tools for single-cell functional screening, to probe molecular mechanisms of cancer and immunological diseases. To accelerate our work, we integrate AI and machine learning to design and evolve gene-editing proteins/RNAs in silico, pushing the frontier that bridges computational and experimental biology.

  • Christopher H. Contag

    Christopher H. Contag

    Professor of Pediatrics (Neonatology), Emeritus

    Current Research and Scholarly InterestsWe develop and use the tools of molecular imaging to understand oncogenesis, reveal patterns of cell migration in immunosurveillance, monitor gene expression, visualize stem cell biology, and assess the distribution of pathogens in living animal models of human biology and disease. Biology doesn't occur in "a vacuum" or on coated plates--it occurs in the living body and that's were we look for biological patterns and responses to insult.

  • John P. Cooke, MD, PhD

    John P. Cooke, MD, PhD

    Professor of Medicine (Cardiovascular Medicine), Emeritus

    Current Research and Scholarly InterestsOur translational research program in vascular regeneration is focused on generating and characterizing vascular cells from human induced pluripotential stem cells. We are also studying the therapeutic application of these cells in murine models of peripheral arterial disease. In these studies we leverage our longstanding interest in endothelial signaling, eg by nitric oxide synthase (NOS) as well as by nicotinic cholinergic receptors (nAChR).

  • David N. Cornfield

    David N. Cornfield

    Anne T. and Robert M. Bass Professor of Pediatric Pulmonary Medicine

    Current Research and Scholarly InterestsOver the past 20 years, the Cornfield Laboratory has focused upon basic, translational and clinical research, with a primary focus on lung biology. As an active clinician-scientist, delivering care to acutely and chronically ill infants and children, our lab focuses on significant clinical challenges and tried to use science to craft novel solutions to difficult clinical problems.

  • Markus Covert

    Markus Covert

    Shriram Chair of the Department of Bioengineering, Professor of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur focus is on building computational models of complex biological processes, and using them to guide an experimental program. Such an approach leads to a relatively rapid identification and validation of previously unknown components and interactions. Biological systems of interest include metabolic, regulatory and signaling networks as well as cell-cell interactions. Current research involves the dynamic behavior of NF-kappaB, an important family of transcription factors.

  • Gerald Crabtree

    Gerald Crabtree

    David Korn, MD, Professor of Pathology and Professor of Developmental Biology

    Current Research and Scholarly InterestsChromatin regulation and its roles in human cancer and the development of the nervous system. Engineering new methods for studying and controlling chromatin and epigenetic regulation in living cells.

  • Bianxiao Cui

    Bianxiao Cui

    Job and Gertrud Tamaki Professor of Chemistry

    Current Research and Scholarly InterestsOur objective is to develop new biophysical methods to advance current understandings of cellular machinery in the complicated environment of living cells. Currently, we are focusing on four research areas: (1) Membrane curvature at the nano-bio interface; (2) Nanoelectrode arrays (NEAs) for scalable intracellular electrophysiology; (3) Electrochromic optical recording (ECORE) for neuroscience; and (4) Optical control of neurotrophin receptor tyrosine kinases.

  • Maria Elizabeth Currie, MD, PhD

    Maria Elizabeth Currie, MD, PhD

    Clinical Assistant Professor, Cardiothoracic Surgery

    BioDr. Maria Currie is a board-certified, fellowship-trained cardiothoracic surgeon and a clinical assistant professor at Stanford University School of Medicine. With subspecialty training in heart failure, she provides expert care for a broad spectrum of cardiovascular conditions, including cardiomyopathy, ischemic heart disease, and valvular heart disease. As part of a multidisciplinary team, she performs heart, lung, and combined heart-lung transplants. She is particularly skilled in valve surgery and the implantation of mechanical circulatory support devices.

    Committed to proactive, patient-centered care, Dr. Currie encourages early referrals from cardiologists and primary care physicians at the first sign of cardiovascular disease. She recognizes that early intervention can significantly improve outcomes and welcomes collaboration around screening, diagnostics, and treatment planning.

    Her approach combines advanced surgical techniques with a strong emphasis on clear communication and compassionate care. Dr. Currie prioritizes patient education, ensuring that individuals understand what to expect before, during, and after surgery. Her goal is to achieve the best possible outcomes using state-of-the-art, minimally invasive cardiac technologies.

    A passionate advocate for improving surgical safety, Dr. Currie leads translational research focused on enhancing intraoperative visualization—particularly during minimally invasive procedures. Her work includes a published study on the use of augmented reality (AR) guided by transesophageal echocardiography to improve mitral valve repair. Her research has appeared in leading journals such as The Journal of Thoracic and Cardiovascular Surgery, The Annals of Thoracic Surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, and Transplant Immunology.

    Her interest in emerging surgical technologies is deeply rooted in her background in biomedical engineering, having earned a PhD in the field. She regularly presents on the use of AR systems, 3D visualization, and robotics-assisted procedures at national and international conferences, including the American Association for Thoracic Surgery and the International Society for Minimally Invasive Cardiothoracic Surgery.

    Dr. Currie has received numerous awards in recognition of her research and academic excellence. She is a Fellow of the Royal College of Surgeons of Canada and an active member of professional organizations including The Society of Thoracic Surgeons, the International Society for Heart and Lung Transplantation, Women in Thoracic Surgery, and the Association of Women Surgeons. She is proud to be part of Stanford Health Care, where she contributes to its long-standing legacy of leadership in cardiac surgery and benefits from cross-disciplinary collaboration with experts in engineering, statistics, and other fields. This environment supports both her research and her mission to provide patients with access to the most advanced, evidence-based care available.

  • Martha S. Cyert

    Martha S. Cyert

    Dr. Nancy Chang Professor

    Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.

  • Jeremy Dahl

    Jeremy Dahl

    Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsMy current research encompasses ultrasonic beamforming and image reconstruction methods, with application areas in improving ultrasound image quality in difficult-to-image patients and ultrasound molecular imaging of cancer. My lab also employs beamforming concepts to enhance other areas of ultrasound research.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Michael D. Dake

    Michael D. Dake

    Thelma and Henry Doelger Professor of Cardiovascular Surgery, Emeritus

    Current Research and Scholarly InterestsImproved endovascular procedures and devices to treat aortic lesions, peripheral arterial disease and venous abnormalities. Focused interest in drug-eluting stents and balloons, endovascular stent-grafts, including branched aortic devices and techniques for the endovascular management of aortic dissection. Current clinical research projects include drug-eluting stents for superficial femoral arterial disease and multiple device trials to evaluate stent-grafts for the treatment of aortic lesions.

  • Ronald L. Dalman MD

    Ronald L. Dalman MD

    Dr. Walter C. Chidester Professor

    Current Research and Scholarly InterestsVascular biology, arterial remodeling, aneurysm development; innovative treatment strategies for AAA, animal models of arterial disease, arterial remodeling and flow changes in spinal cord injury, genetic regulation of arterial aneurysm formation

  • Rajesh Dash, MD PhD;      Director of SSATHI & CardioClick

    Rajesh Dash, MD PhD; Director of SSATHI & CardioClick

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsI have two research areas:
    1) Heart disease in South Asians - genetic, metabolic, & behavioral underpinnings of an aggressive phenotype.

    2) Imaging cell injury & recovery in the heart. Using Cardiac MRI to visualize signals of early injury and facilitating preventive medical therapy. Optimizing new imaging methods for viable cells to delineate live heart cells or transplanted stem cells.

  • Reinhold Dauskardt

    Reinhold Dauskardt

    Ruth G. and William K. Bowes Professor in the School of Engineering

    BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.

  • Kiera Davis

    Kiera Davis

    Casual Employee, Med/Stanford Center for Clinical Research

    Current Role at StanfordClinical Associate Director, Education & Training
    Program Lead, SHC Tri-Valley Program Management Office (PMO)

  • Mark M. Davis

    Mark M. Davis

    Burt and Marion Avery Family Professor

    Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.

  • Vinicio de Jesus Perez MD

    Vinicio de Jesus Perez MD

    Associate Dean of Stanford MD Admissions and Professor of Medicine (PACCM)

    Current Research and Scholarly InterestsMy work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.

  • Robert DeBusk

    Robert DeBusk

    Professor of Medicine, Emeritus

    Current Research and Scholarly InterestsExperimental and clinical epidemiology of myocardial, infarction; exercise testing; cardiac risk factor management;, cardiac rehabilitation; systems for patient management; ischemic, heart disease; computer-based expert systems.

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Diagnostic Sciences Laboratory) and, by courtesy, of Electrical Engineering

    BioDr. Utkan Demirci, UofM’99, Stanford’01’05’05, is a Professor of Radiology (with tenure) and of Electrical Engineering (by courtesy) at the Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, where he leads a productive researcher group. Utkan is a tenured professor at Stanford University School of Medicine. Prior to joining Stanford in 2014, he held the position of Associate Professor at the Brigham and Women’s Hospital-Harvard Medical School and also served at the Harvard-MIT Health Sciences and Technology division. Over the past decade, his research group has focused on the early detection of cancer and has made significant contributions to the development of microfluidic platforms for sorting rare cells and exosomes and point-of-care bio-sensing technologies.

    Dr. Demirci leads a productive and impactful research group focused on addressing problems from the clinic with innovations including cell sorter for IVF, optical technologies for detecting viruses, portable point of care technologies for diagnostics in global health, smart robots in vivo, extracellular vesicle based early detection approaches for cancer. He is an elected fellow of the American Institute of Medical and Biological Engineering and The Academy for Radiology & Biomedical Imaging Research Distinguished Investigator.

    He has published over 250 peer-reviewed articles, 300 abstracts and proceedings, 24 book chapters and editorials, and 7 edited books. He also serves on the editorial board of various journals. He is a serial academic entrepreneur and co-founded multiple successful companies. His patents are translated into broadly used biomedical products. Dr. Demirci's pioneering work in microfluidics and cell sorting has resulted in CE certified and FDA approved devices used in over 500,000 clinical cases serving patients globally.

  • Tushar Desai

    Tushar Desai

    Professor of Medicine (Pulmonary, Allergy and Critical Care Medicine)

    Current Research and Scholarly InterestsBasic and translational research in lung stem cell biology, cancer, pulmonary fibrosis, COPD, and acute lung injury/ARDS. Upper airway stem cell CRISPR gene correction followed by autologous stem cell transplantation to treat Cystic fibrosis. Using lung organoids and precision cut lung slice cultures of mouse and human lungs to study molecular regulation of lung stem cells. Using transgenic mice to visualize Wnt protein transmission from niche cell to stem cell in vivo.

  • Gundeep Dhillon, MD, MPH

    Gundeep Dhillon, MD, MPH

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly Interests1. Use of an administrative database (UNOS) to study lung transplant outcomes.
    2. Expression of the plasminogen activator inhibitor (PAI) 1 antibody in peripheral blood after lung transplantation and its association with bronchiolitis obliterans syndrome (chronic rejection).
    3. Impact of airway hypoxia, due to lack of bronchial circulation, on long-term lung transplant outcomes.
    4. CMV specific T-cell immunity in lung transplant recipients and its impact on acute rejection.

  • Jennifer Dionne

    Jennifer Dionne

    Professor of Materials Science and Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    BioJennifer (Jen) Dionne is a Professor of Materials Science and Engineering and, by courtesy, of Radiology at Stanford. She is also a Chan Zuckerberg Biohub Investigator, deputy director of Q-NEXT (a DOE National Quantum Initiative), and co-founder of Pumpkinseed, a company developing quantum sensors to understand and optimize the immune system. From 2020-2023, Jen served as Stanford’s Inaugural Vice Provost of Shared Facilities, raising capital to modernize instrumentation, fund experiential education, foster staff development, and support new and existing users of the shared facilities. Jen received her B.S. degrees in Physics and Systems Science and Mathematics from Washington University in St. Louis, her Ph. D. in Applied Physics at the California Institute of Technology in 2009, and her postdoctoral training in Chemistry at Berkeley. As a pioneer of nanophotonics, she is passionate about developing methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her research has developed culture-free methods to detect pathogens and their antibiotic susceptibility; amplification-free methods to detect and sequence nucleic acids and proteins; and new methods to image light-driven chemical reactions with atomic-scale resolution. Jen’s work has been featured in NPR, the Economist, Science, and Nature, and recognized with the NSF Alan T. Waterman Award, a NIH Director’s New Innovator Award, a Moore Inventor Fellowship, and the Presidential Early Career Award for Scientists and Engineers. She was also featured on Oprah’s list of “50 Things that will make you say ‘Wow’!”. She also perceives outreach as a critical component of her role and frequently collaborates with visual and performing artists to convey the beauty of science to the broader public.

  • Rajiv Doshi, MD

    Rajiv Doshi, MD

    Adjunct Professor and Director, India Biodesign Program, Medicine - Cardiovascular Medicine

    Current Research and Scholarly InterestsDr. Rajiv Doshi serves as an Adjunct Professor of Medicine and as the Director of the India Program at the Byers Center for Biodesign. Dr. Doshi is also the co-Director of the India-based Founders Forum, an executive education training program for India’s leading health technology entrepreneurs. He has also advised the Government of India and various Indian state governments in the development of policies that support Indian health technology innovation.

  • N. Lance Downing

    N. Lance Downing

    Clinical Assistant Professor, Medicine

    BioI am board-certified internal medicine and clinical informatics. I am a primary care physician and teaching hospitalist. I have published work in the New England Journal of Medicine, Health Affairs, Annals of Internal Medicine, and the Journal of the American Medical Informatics Association. My primary focus throughout my career has been to deliver personalized and compassionate care that incorporates the latest advancements in medical science. I aim to help all of my patients maximize their healthspan and age with the best quality of life possible.

  • Anne Dubin

    Anne Dubin

    Endowed Professor of Pediatric Cardiology

    Current Research and Scholarly InterestsArrhythmia management in pediatric heart failure, especially resynchronization therapy in congenital heart disease,Radio frequency catheter ablation of pediatric arrhythmias,

  • Ramzi Emanuel Dudum

    Ramzi Emanuel Dudum

    Member (Postdoc), Cardiovascular Institute

    BioDr. Dudum is a cardiologist and population health expert working to develop novel risk prediction methods and implementation strategies to create practices and systems that allow for reductions in cardiovascular disease. He completed a Masters in Public Health at Johns Hopkins concentrating in epidemiology and biostatistics and a Doctorate of Medicine at George Washington University.

    He completed internal medicine residency training as part of the Osler Medical Service, where he worked under the mentorship of Drs. Roger Blumenthal and Michael Blaha to study improving cardiovascular risk prediction and coronary artery calcium. Given his focus on population health and implementation science, he also helped launch and refine risk adjustment tools and implemented guideline-directed medical care pathways. During his time there, he was recognized for his clinical acumen and dedication to patient care.

    He came to Stanford for his cardiovascular medicine fellowship and continued research in coronary artery calcium under the mentorship of Drs. David Maron and Fatima Rodriguez while also conducting cardiovascular health implementation science work under the mentorship of Dr. Steve Asch. He serves as the co-investigator of a prospective randomized trial testing the effects of notification of incidental coronary artery calcium on statin initiation rates among those with and without cardiovascular disease (NCT 05588895). He has worked with hospital leaders to implement digital health and artificial intelligence tools, creating the infrastructure for the prospective use of AI-algorithms on radiology studies. As a preventive cardiologist and population health expert, he leads efforts in the preventive cardiology section related to improving cardiovascular health.