School of Medicine


Showing 681-700 of 739 Results

  • Tao Wang (王韬)

    Tao Wang (王韬)

    Director of Precision Diabetes Care, Genetics

    Current Role at StanfordPrincipal Investigator, AI for Precision Diabetes Management
    Project Manager & Scientific Co-lead, PsychENCODE Project
    Project Initiator & Clinical Co-lead, Long COVID Clinical RCT with TCM
    Project Initiator & Manager, AI & Wearables Toolkit for Biomedical Sciences
    ENCODE and PsychENCODE Project Data Manager
    Research Scientist, US Veteran Affairs Hospital
    SCGPM HPC System Administrator

  • Ann Weinacker

    Ann Weinacker

    Professor of Medicine (Pulmonary and Critical Care)

    Current Research and Scholarly InterestsDr. Weinacker's research interests center around ICU outcomes. Her specific interests include primary graft dysfunction in lung transplant recipients.

  • Irving Weissman

    Irving Weissman

    Virginia & D.K. Ludwig Professor of Clinical Investigation in Cancer Research, Professor of Pathology, and of Developmental Biology

    Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis; order of events from hematopoietic stem cells [HSC] to AML leukemia stem cells and blood diseases, and parallels in other tissues; discovery of tumor and pathogenic cell 'don't eat me' and 'eat me' signals, and translation into therapeutics.

  • Chad S. Weldy, M.D., Ph.D.

    Chad S. Weldy, M.D., Ph.D.

    Instructor, Medicine - Cardiovascular Medicine

    Current Research and Scholarly InterestsAs a physician-scientist I work to understand the genetic basis of cardiovascular disease and the transcriptional and epigenomic mechanisms of atherosclerosis. My work is focused across four main areas of cardiovascular genetics and mechanisms of coronary artery disease and smooth muscle biology:

    1.Vascular smooth muscle specific ADAR1 mediated RNA editing of double stranded RNA and activation of the double stranded RNA receptor MDA5 in coronary artery disease and vascular calcification
    2.Defining on single cell resolution the cellular and epigenomic features of human vascular disease across vascular beds of differing embryonic origin
    3.CRISPRi screening with targeted perturb seq (TAPseq) to identify novel CAD genes in human coronary artery smooth muscle cells
    4.Investigation of the epigenetic and molecular basis of coronary artery disease and smooth muscle cell transition in mice with conditional smooth muscle genetic deletion of CAD genes Pdgfd and Sox9

    My work is focused on discovery of causal mechanisms of disease through leveraging human genetics with sophisticated molecular biology, single cell sequencing technologies, and mouse models of disease. This work attempts to apply multiple scientific research arms to ultimately lead to novel understandings of vascular disease and discover important new therapeutic approaches for drug discovery.

    First Author Manuscripts for this work:

    •Weldy, C. S., et al. (2025). Smooth muscle cell expression of RNA editing enzyme ADAR1 controls activation of RNA sensor MDA5 in atherosclerosis. (2025). Nature Cardiovascular Research. 1-17, PMID: 40958051, doi: 10.1038/s44161-025-00710-5
    •*Selected as finalist for Louis N. and Arnold M. Katz Basic Science Research Prize from the American Heart Association, finalist competition November 16, 2024, Chicago
    •Work was highlighted in the Stanford Department of Medicine News
    https://medicine.stanford.edu/news/current-news/standard-news/RNA-editing.html


    •Weldy, C.S., et al. (2025). Epigenomic landscape of single vascular cells reflects developmental origin and disease risk loci. Molecular Systems Biology. 1-25, PMID: 40931195, doi:10.1038/s44320-025-00140-2.
    •*Selected for the cover of November 2025 edition of Molecular Systems Biology


    Grant funding received for this work:

    Mentored Clinical Scientist Research Career Development Award (K08)(NIH/NHLBI, 1 K08 HL167699-01), August, 2023 – July 2028. PI: Weldy, Chad
    •Title of proposal: “ADAR Mediated RNA editing is a causal mechanism in coronary artery disease”.
    •Activated 08/01/2023
    •$850,000 over 5 years

    Career Development Award, American Heart Association (AHA CDA)(23CDA1042900), July, 2023 – June, 2026. PI: Weldy, Chad
    •Title of proposal: “Linking RNA editing to coronary artery calcification and disease”
    •Activated 07/01/2023
    •$231,000 over three years

    NIH Loan Repayment Program (LRP) Award (NIH/NHLBI) Renewal Award, July, 2023. PI: Weldy, Chad
    •Title of proposal: “RNA editing is a causal mechanism of coronary artery disease”

    Ruth L. Kirschstein National Research Service Award (NRSA) Individual Postdoctoral Fellowship (F32) (NIH/NHLBI, 1 F32 HL160067-01), July, 2021 – June 2023 (Completed). PI: Weldy, Chad
    • Titled, “A transcriptional network which governs smooth muscle transition is mediated by causal coronary artery disease gene PDGFD”
    •*Received perfect score with impact score 10, 1st percentile

    NIH Loan Repayment Program (LRP) Award (NIH/NHLBI), July, 2021. PI: Weldy, Chad
    •Title of proposal: "Single cell transcriptomic and epigenomic features of human atherosclerosis".
    •This will award up to $100,000 towards student loans over the next 24 months with opportunity for renewal after 24 months.

  • Gerlinde Wernig

    Gerlinde Wernig

    Associate Professor of Pathology

    Current Research and Scholarly InterestsFibrotic diseases kill more people than cancer in this country and worldwide. We believe that scar-forming cells called fibroblasts are at the core of the fibrotic response in parenchymal organ fibrosis in the lung, liver, skin, bone marrow and tumor stroma. At the cellular level we think of fibrosis as a step wise process which implicates inflammation and fibrosis. We seek to identify new effective immune therapy targets to treat fibrotic diseases.

  • Marius Wernig

    Marius Wernig

    Professor of Pathology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine

  • Cornelia Weyand

    Cornelia Weyand

    Professor of Medicine (Immunology and Rheumatology), Emerita

    Current Research and Scholarly InterestsAutoimmunity
    Chronic inflammatory disease
    Metabolic control of immune function

  • Matthew T. Wheeler

    Matthew T. Wheeler

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsTranslational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.

  • Jeffrey J. Wine

    Jeffrey J. Wine

    Benjamin Scott Crocker Professor of Human Biology, Emeritus

    Current Research and Scholarly InterestsThe goal is to understand how a defective ion channel leads to the human genetic disease cystic fibrosis. Studies of ion channels and ion transport involved in gland fluid transport. Methods include SSCP mutation detection and DNA sequencing, protein analysis, patch-clamp recording, ion-selective microelectrodes, electrophysiological analyses of transmembrane ion flows, isotopic metho

  • Virginia D. Winn, MD, PhD

    Virginia D. Winn, MD, PhD

    Professor of Obstetrics and Gynecology (Reproductive, Perinatal & Stem Cell Biology Research)

    Current Research and Scholarly InterestsThe Winn Laboratory seeks to understand the unique biological mechanisms of human placentation. While the placenta itself is one of the key characteristics for defining mammals, the human placenta is different from most available animal models: it is one of the most invasive placentas, and results in the formation of an organ comprised of cells from both the fetus and the mother. In addition to this fascinating chimerism, fetal cells are deeply involved in the remodeling of the maternal vasculature in order to redirect large volumes of maternal blood to the placenta to support the developing fetus. As such, the investigation of this human organ covers a large array of biological processes, and deals not only with understanding its endocrine function, but the physiologic process of immune tolerance, vascular remodeling, and cellular invasion.

  • Ronald Witteles

    Ronald Witteles

    Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly Interests1) Amyloidosis -- Optimizing diagnosis/therapy and discovering new treatments
    2) CardioOncology -- Understanding, treating, and preventing cancer therapy-induced cardiotoxicity
    3) Sarcoidosis -- Exploring novel diagnostic modalities and determining optimal treatment, with a focus on cardiac sarcoidosis

  • Wing Hung Wong

    Wing Hung Wong

    Stephen R. Pierce Family Goldman Sachs Professor of Science and Human Health and Professor of Biomedical Data Science

    Current Research and Scholarly InterestsCurrent interest centers on the application of statistics, computation and engineering approaches to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.

  • Jennifer Woo, MD

    Jennifer Woo, MD

    Clinical Assistant Professor, Medicine - Cardiovascular Medicine
    Clinical Assistant Professor, Pediatrics - Cardiology

    BioDr. Woo is a board-certified, fellowship-trained cardiologist with the Adult Congenital Heart Program at Stanford Health Care. She is also a clinical assistant professor in the Divisions of Cardiovascular Medicine and Pediatric Cardiology at Stanford University School of Medicine.

    She diagnoses and treats a range of cardiovascular diseases, with a focus on adult congenital heart disease. Dr. Woo has Level III training with the National Board of Echocardiography, a certification that recognizes her experience in complex cardiac imaging. She also has specialized expertise in cardiac MRI. Each of her patients receives a personalized, comprehensive care plan delivered with compassion.

    Dr. Woo is heavily involved in adult congenital heart disease research. She has a particular interest in imaging and heart failure in adults with congenital heart disease. She has received grant funding for her work, including from the Adult Congenital Heart Association. The National Institutes of Health awarded granted her the Ruth L. Kirschstein National Research Service Award.

    She has published research in several peer-reviewed journals, such as the Journal of the American College of Cardiology and Pediatric Cardiology. Dr. Woo has presented her findings at regional and national meetings, including the Adult Congenital Heart Disease Bay Area Conference and the International Symposium on Adult Congenital Heart Disease.

    Dr. Woo is a member of the Adult Congenital Heart Association, American College of Cardiology, American Heart Association, and American Society of Echocardiography.

  • Joseph Woo, MD, FACS, FACC, FAHA

    Joseph Woo, MD, FACS, FACC, FAHA

    Norman E. Shumway Professor, Professor of Cardiothoracic Surgery and, by courtesy, of Bioengineering

    BioDr. Woo is a board-certified, fellowship-trained cardiothoracic surgeon, cardiovascular surgeon, and transplant surgeon with Stanford Health Care. He is professor and chair of the Stanford Medicine Department of Cardiothoracic Surgery and associate director of the Stanford Cardiovascular Institute. He is also the Norman E. Shumway Professor of Cardiothoracic Surgery and professor, by courtesy, in the Department of Bioengineering.

    Dr. Woo is a nationally recognized surgeon, innovator, researcher, and educator in cardiothoracic surgery. He focuses on complex mitral and aortic valve repair, thoracic aortic surgery, heart and lung transplantation, and minimally invasive heart surgery. He was awarded the American Heart Association’s 2021 Clinical Research Prize for developing innovative and minimally invasive surgeries to repair and reconstruct heart valves.

    In 2022, Dr. Woo and his team at Stanford Health Care performed the first beating-heart transplant from a donation after circulatory death (DCD) donor and organ perfusion system. Keeping a donor heart pumping while it’s transported to the recipient and then implanting the heart while it’s beating minimizes organ damage. This groundbreaking new procedure is expected to increase the number of hearts available for transplant while improving health outcomes.

    As a physician-scientist, Dr. Woo has served as principal investigator on multiple studies funded by National Institutes of Health (NIH) grants. One explored an innovative therapy to stimulate vascular (blood-carrying) stem cells in the bone marrow and direct them to the heart to grow new blood vessels and improve blood flow to damaged heart muscle.

    Dr. Woo has also been the primary investigator for clinical trials involving the administration of stem cells during coronary artery bypass grafting (CABG) and left ventricular assist device (LVAD) implantation. In addition, Dr. Woo has served as primary investigator for multiple clinical device trials. He has filed for and holds patents for several heart-related medical devices and surgical techniques.

    Dr. Woo has co-authored more than 450 articles in peer-reviewed journals and has served as a reviewer for many of them, including the Annals of Thoracic Surgery, Journal of Thoracic and Cardiovascular Surgery, and Circulation. He has also presented his research and performed live surgery demonstrations both nationally and internationally.

    Dr. Woo serves as vice president of the American Association for Thoracic Surgery (AATS) and past president of the AATS Cardiac Surgery Biology Club. He is a fellow of the American College of Surgeons, American College of Cardiology, and American Heart Association. He is a member of many other professional societies, including the World Society of Cardiovascular and Thoracic Surgeons and International Society for Heart Research. He also serves on the leadership committee of the American Heart Association’s Council on Cardiovascular Surgery and Anesthesia.