Stanford University
Showing 1-20 of 274 Results
-
Raag Airan
Associate Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Materials Science & Engineering and of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsOur goal is to develop and clinically implement new technologies for high-precision and noninvasive intervention upon the nervous system. Every few millimeters of the brain is functionally distinct, and different parts of the brain may have counteracting responses to therapy. To better match our therapies to neuroscience, we develop techniques that allow intervention upon only the right part of the nervous system at the right time, using technologies like focused ultrasound and nanotechnology.
-
Eric Appel
Associate Professor of Materials Science and Engineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Pediatrics (Endocrinology) and of Bioengineering
Current Research and Scholarly InterestsThe underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.
-
Zhenan Bao
K. K. Lee Professor, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering, of Chemistry, and of Bioengineering
BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry, Bioengineering and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022 and in 2025. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 800 refereed publications and more than 80 US patents with a Google Scholar H-index 237.
Bao is a member of the US National Academy of Sciences, National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.
Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She co-founded C3 Nano Co. (acquired by Du Pont) and PyrAmes, which have produced products used in commercial smartphones and hospitals, respectively. Multiple inventions from her lab have been licensed and served as foundational technologies for several additional start-ups.
Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008.
In Stanford, Bao has pioneered molecular design concepts and fabrication processes to advance the scope and applications of skin-inspired electronics. Her group discovered nano confinement effect of conjugated polymers in polymer blends, which established the fundamental foundation for skin-inspired electronic materials and devices. Her work has resulted in new materials and device solutions for soft robotics, wearable and implantable electronics for precision health, precision mental health and advanced tools for understanding neuroscience and treatment of neurodegenerative diseases. Building on chemical insights, her group has developed foundational materials and devices that enabled a new generation of skin-inspired soft electronics. They provide unprecedented opportunities for understanding human health through developing monitoring, diagnosis and treatment tools. Some examples include: a neuromorphic e-skin that can sense force and temperature and directly communicate with brain, a wireless wound healing patch, a soft NeuroString for simultaneous neurochemical monitoring in the brain and gut, soft high-density electrophysiological recording array, a meta-learned skin sensor for detailed body movements, a reconfigurable self-healing electronic skin. -
David Barnett
Professor of Materials Science and Engineering and of Mechanical Engineering, Emeritus
BioDislocations in Elastic Solids; Bulk, Surface and Interfacial Waves in Anisotropic Elastic Media; Mechanics of Piezoelectric and Piezomagnetic Materials, Modeling of transport in fuel cell materials and of AFM usage to characterize charge distributions and impedance of fuel cell media. He is the author of over 125 technical articles concerned with dislocations and waves in anisotropic elastic and piezoelectric media.
-
Stacey Bent
Jagdeep & Roshni Singh Professor in the School of Eng, Professor of Energy Science and Eng, Senior Fellow at Precourt & Prof, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry
On Leave from 04/01/2025BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.
-
John Bravman
Bing Centennial Prof, Freeman-Thornton Chair for Vice Provost for Undergrad Ed, & Dean of Fresh-Soph College, & Prof of Materials Sci & Eng, Emeritus
Biohttps://www.bucknell.edu/meet-bucknell/bucknell-leadership/meet-president-bravman
-
Mark Brongersma
Director, Geballe Laboratory for Advanced Materials (GLAM), Stephen Harris Professor, Professor of Materials Science and Engineering and, by courtesy, of Applied Physics
BioMark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD in Materials Science from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. During this time, he coined the term “Plasmonics” for a new device technology that exploits the unique optical properties of nanoscale metallic structures to route and manipulate light at the nanoscale. His current research is directed towards the development and physical analysis of nanostructured materials that find application in nanoscale electronic and photonic devices. Brongersma received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the Optical Society of America, the SPIE, and the American Physical Society.