Stanford University
Showing 451-500 of 624 Results
-
George A. Poultsides, MD, MS
Stanford Department of Surgery Professor
Current Research and Scholarly InterestsClinical trials of experimental diagnostics and therapeutics; outcomes analysis following combined modality treatment of hepatic, pancreatic, and gastrointestinal malignancies.
-
Guillem Pratx
Associate Professor of Radiation Oncology (Radiation Physics)
Current Research and Scholarly InterestsThe Physical Oncology Lab is interested in making a lasting impact on translational cancer research by building novel physical tools and methods.
-
Judith Prochaska
Senior Associate Vice Provost, Clinical Research Governance and Professor of Medicine (Stanford Prevention Research Center)
Current Research and Scholarly InterestsDr. Prochaska's clinical trials research focuses on developing and testing evidence-based interventions for tobacco, other substance use, physical activity, and diet. She has led randomized controlled trials of treatments that combine motivational, behavioral, and pharmacologic strategies, including use of telemedicine, therapeutic relational agents, social-media–supported interventions, and tailored programs for socio-demographically diverse and at-risk groups to advance population health.
-
Carla Pugh, MD, PhD
Thomas Krummel Professor
Current Research and Scholarly InterestsThe Technology Enabled Clinical Improvement (T.E.C.I.) Center is a multidisciplinary team of researchers dedicated to the design and implementation of advanced engineering technologies that facilitate data acquisition relating to clinical performance.
-
Lei (Stanley) Qi
Associate Professor of Bioengineering
BioDr. Lei (Stanley) Qi (publishes as Lei S. Qi) is an Associate Professor in the Department of Bioengineering at Stanford University, an Institute Scholar at Sarafan ChEM-H, and a Chan Zuckerberg Biohub Investigator. Trained in physics and mathematics (Tsinghua University) and bioengineering (UC Berkeley), he was a Systems Biology Fellow at UCSF before joining the Stanford faculty in 2014.
Qi is a pioneer in CRISPR technology and genome engineering. His lab created the first nuclease-deactivated Cas9 (dCas9) for targeted gene regulation, establishing CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa). Since then, his group has expanded CRISPR from an editing tool into a platform for programmable control of dynamic and spatial cell state, integrating scalable perturbation, live-cell and super-resolution imaging, and computation-guided design. This work has produced technologies for multiplexed transcriptome regulation, programmable 3D genome organization, spatial RNA logistics control, and real-time visualization of chromatin and transcriptional events in living cells.
A distinctive focus of the Qi lab is closed-loop biology, combining perturbation with high-content measurements to infer mechanisms and iteratively refine control strategies. The lab develops platforms spanning multiplexed transcriptional and epigenetic control, spatial genome–transcriptome organization, and quantitative live-cell imaging of chromatin and transcriptional dynamics. A compact nuclease-dead CRISPR epigenetic editor from this technology lineage has advanced to first-in-human clinical testing for facioscapulohumeral muscular dystrophy (FSHD; NCT06907875), underscoring the translational potential of principle-driven control systems.
Beyond single-cell control, Qi’s lab is building a framework for synthetic cell–cell communication, with particular emphasis on the bidirectional interplay between immune cells and neurons. The lab’s goal is to move beyond describing molecular parts to discovering fundamental control principles in living systems: how regulatory landscapes create stable states and memory, how spatial genome–RNA organization shapes dynamic responses, and how engineered cell–cell interactions can generate emergent multicellular behaviors. By integrating experimental bioengineering with computation and machine learning, the lab aims to identify generalizable rules linking molecular programs to systems-level physiology and disease trajectories and to translate those rules into next-generation therapeutic cells. -
Stephen Quake
Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics
Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.
-
Sneha Ramakrishna
Assistant Professor of Pediatrics (Hematology/Oncology)
BioSneha Ramakrishna obtained her B. A. from the University of Chicago and her M.D. from the Cleveland Clinic Lerner College of Medicine at Case Western Reserve University. In medical school, through the Howard Hughes Medical Research Scholar Award, she joined Dr. Crystal Mackall’s laboratory, where she designed and developed various GD2 CAR-Ts and tested them in preclinical models. During her residency training in Pediatrics at the Children’s Hospital of Philadelphia, she cared for some of the first patients treated with CD19 CAR T cells, learning the power of this therapy first-hand. During her fellowship in Pediatric Hematology/Oncology at the Johns Hopkins/National Cancer Institute combined program, she worked with Dr. Terry Fry. She evaluated the mechanism of CD22 CAR T cell relapse in patients by developing an antigen escape model and establishing a deeper understanding of the effects of antigen density on CAR-T phenotype, expansion, and persistence (Fry…Ramakrishna…Mackall Nat Med, 2018; Ramakrishna, et al., Clinical Cancer Research, 2019). Since arriving at Stanford, Dr. Ramakrishna leads an interdisciplinary team that designs, develops, and successfully implements a robust correlative science platform for our novel CAR-T therapies. Analyzing patient samples from our first-in-human GD2 CAR-T trial (NCT04196413) treating a universally fatal cancer, diffuse midline glioma (DMG), we identified that intracerebroventricular CAR-T administration correlates with enhanced pro-inflammatory cytokines and reduced immunosuppressive cell populations in cerebrospinal fluid as compared to intravenous CAR-T administration (Majzner*, Ramakrishna*, et al., Nature 2022 *co-first authors). Her research program evaluates unique sets of patient samples using novel single-cell immune profiling to identify the drivers of CAR-T success or failure. Building on these findings, her team assesses approaches to enhance CAR-T efficacy and translate these findings to the clinic.
Clinically, Dr. Ramakrishna cares for children with solid tumors and treats hematologic, solid, and brain tumor pediatric patients with CAR T cell therapies in the Cancer Cellular Therapies program. -
Kavitha Ramchandran
Clinical Professor, Medicine - Oncology
Current Research and Scholarly InterestsMy research focuses on innovative models of care delivey to understand how to integrate primary and specialist palliative care. We also do work in palliative care education and how to scale our education to be impactful and sustainable. We are evaluating online models.
In cancer care I do research on novel therapeutics in thoracic malignancies including immunotherapy, new targeted agents, and new sequencing of approved drugs. -
Jianghong Rao
Professor of Radiology (Molecular Imaging Program at Stanford) and, by courtesy, of Chemistry
Current Research and Scholarly InterestsProbe chemistry and nanotechnology for molecular imaging and diagnostics
-
Lawrence Recht, MD
Professor of Neurology and Neurological Sciences (Adult Neurology) and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsOur laboratory focuses on two interrelated projects: (1) assessment of glioma development within the framework of the multistage model of carcinogenesis through utilization of the rodent model of ENU neurocarcinogenesis; and (2) assessment of stem cell specification and pluripotency using an embryonic stem cell model system in which neural differentiation is induced.
-
David Rehkopf
Professor of Epidemiology and Population Health, of Medicine (Primary Care and Population Health) and, by courtesy, of Pediatrics, of Health Policy and of Sociology
BioI am a social epidemiologist and serve as a Professor in the Department of Epidemiology and Population Health and in the Department of Medicine in the Division of Primary Care and Population Health. I joined the faculty at Stanford School of Medicine in 2011.
I am Director of the Stanford Center for Population Health Sciences. In this position, I am committed to making high-value data resources available to researchers across disciplines in order to better enable them to answer their most pressing clinical and population health questions.
My own research is focused on understanding the health implications of the myriad decisions that are made by corporations and governments every day - decisions that profoundly shape the social and economic worlds in which we live and work. While these changes are often invisible to us on a daily basis, these seemingly minor actions and decisions form structural nudges that can create better or worse health at a population level. My work demonstrates the health implications of corporate and governmental decisions that can give the public and policy makers evidence to support new strategies for promoting health and well-being. In all of his work, I have a focus on the implications of these exposures for health inequalities.
Since often policy and programmatic changes can take decades to influence health, my work also includes more basic research in understanding biological signals that may act as early warning signs of systemic disease, in particular accelerated aging. I examine how social and economic policy changes influence a range of early markers of disease and aging, with a particular recent focus on DNA methylation. I am supported by several grants from the National Institute on Aging and the National Institute on Minority Health and Health Disparities to develop new more sensitive ways to understand the health implications of social and economic policy changes. -
David A. Relman
Thomas C. and Joan M. Merigan Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsMy investigative program focuses on human-microbe interactions and human microbial ecology, and primarily concerns the ecology of human indigenous microbial communities; a secondary interest concerns the classification of humans with systemic infectious diseases, based on features of genome-wide gene transcript abundance patterns and pther aspects of the host response.
-
Nathan Reticker-Flynn, PhD
Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsTo metastasize throughout our bodies, tumors subvert and co-opt our immune systems. Our lab seeks to uncover how these processes occur and develops therapies to put a stop to them.
-
Andrew Rezvani, M.D.
Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsClinical research in allogeneic hematopoietic cell transplantation
-
Thomas Robinson
The Irving Schulman, M.D. Professor of Child Health, Professor of Medicine (Stanford Prevention Research Center) and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsDr. Robinson originated the solution-oriented research paradigm and directs the Stanford Solutions Science Lab. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy.
-
William H. Robinson, MD PhD
James W. Raitt, M.D. Professor
Current Research and Scholarly InterestsOur lab investigates the molecular mechanisms of and develops therapies to treat autoimmune and rheumatic diseases, with a focus on rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and osteoarthritis.
The overriding objectives of our laboratory are:
1. To elucidate the mechanisms underlying autoimmune and rheumatic diseases.
2. To investigate the role of innate immune inflammation in osteoarthritis.
3. To develop novel diagnostics and therapeutics -
Stanley G. Rockson, MD
Allan and Tina Neill Professor of Lymphatic Research and Medicine
Current Research and Scholarly InterestsMy clinical research includes studies on risk factor modification in atherosclerosis and coronary artery disease; clinical trials involving medical therapies for peripheral arterial insufficiency; coronary angiogenesis; therapy of lymphedema; atherand photodynamic therapy in atherosclerosis.
-
Kacper Rogala
Assistant Professor of Structural Biology and of Chemical and Systems Biology
Current Research and Scholarly InterestsOur team is fascinated by how cells make growth decisions — to grow or not to grow. In order to grow, cells require nutrients, and we are unraveling how cells use specialized protein sensors and transporters to sense and traffic nutrients in between various compartments. We use approaches from structural biology, chemical biology, biophysics, biochemistry, and cell biology — to reveal the mechanisms of basic biological processes, and we develop chemical probes that modulate them.
-
Rajat Rohatgi
Professor of Biochemistry and of Medicine (Oncology)
Current Research and Scholarly Intereststhe overall goal of my laboratory is to uncover new regulatory mechanisms in signaling systems, to understand how these mechanisms are damaged in disease states, and to devise new strategies to repair their function.
-
Maria Grazia Roncarolo
George D. Smith Professor of Stem Cell and Regenerative Medicine, Emerita
Current Research and Scholarly InterestsResearch Interests
Immunetolerance: Mechanisms underlying T-cell tolerance, induction of T-cell anergy and regulatory T cells; Immunomodulation: mAbs, proteins and low molecular weight compounds which can modulate T-cell activation; Primary immunodeficiencies: Characterization of molecular and immunological defects; Gene therapy: Gene transduction of hematopoietic cells for gene therapy in primary immunodeficiencies and metabolic diseases; Hematopoiesis: Mechanisms underlying growth and differentiation of hematopoietic stem cells; Transplantation: Immune reconstitution and T-cell tolerance after allogenic stem cell transplantation; Cytokines/Cytokine receptors: Role in regulation of immune and inflammatory responses
Clinical Interests
Primary Immunodeficiencies
Monogenic Autoimmune Disorders
Allogenic Bone Marrow Transplantation
Gene Therapy Clinical Trials
Cell Therapy Clinical Trials
Clinical Trials in Autoimmune Diseases and Organ Transplantation
Clinical Trials in Hemoglobinopathies -
Lisa Goldman Rosas
Associate Professor (Research) of Epidemiology and Population Health, of Medicine (Primary Care and Population Health) and, by courtesy, of Pediatrics
BioLisa Goldman Rosas, PhD MPH is an Associate Professor in the Department of Epidemiology and Population Health and the Department of Medicine, Division of Primary Care and Population Health at Stanford School of Medicine. An epidemiologist by training, Dr. Goldman Rosas’ research focuses on addressing disparities in diet-related chronic diseases such as diabetes, heart disease, depression, and cancer especially for those who face food insecurity. This research features rigorous quantitative and qualitative methodologies, participatory qualitative approaches, and shared leadership with patient and community partners. She is passionate about integrating patients, caregivers, community organizations, and other key stakeholders in the research process in order to affect the greatest improvements in health and well-being. As a reflection of this passion, Dr. Goldman Rosas serves as the Faculty Director for the School of Medicine Office of Community Engagement, Co-Director of Community-Engaged Research for the Office of Cancer Health Equity, and Director of the Outreach, Recruitment and Engagement Core for the Alzheimer's Disease Research Center. In these roles, she supports other faculty and patient and community partners to develop sustainable and meaningful partnerships to support transformative research. In addition to research, she teaches at the undergraduate and graduate levels and has a special focus on increasing capacity in community engagement methods.
-
David Rosenthal
Professor of Pediatrics (Pediatric Cardiology)
Current Research and Scholarly InterestsResearch interests include the study of Heart Failure, Cardiomyopathy and ventricular dysfunction in children, from a clinical perspective. Investigations include clinical trials of medications, cardiac resynchronization, and mechanical circulatory support.
-
Jason B. Ross, MD, PhD
Assistant Professor of Radiation Oncology (Radiation Therapy)
Current Research and Scholarly InterestsMy laboratory studies studying normal, dysfunctional, and malignant stem cells in the context of aging, cancer, and cancer therapies.
-
Theodore Roth
Assistant Professor of Pathology
Current Research and Scholarly InterestsThe Roth Lab develops, applies, and translates scalable genetic manipulation technologies in primary human cells and complex in vivo tissue environments. Working with students, trainees, and staff with backgrounds across bioengineering, genetics, immunology, oncology, and pathology, the lab has developed CRISPR-All, a unified genetic perturbation language able to arbitrarily and combinatorially examine genetic perturbations across perturbation type and scale in primary human cells. Ongoing applications of CRISPR-All in the lab have revealed surprising capacities to synthetically engineer human cells beyond evolved cellular states. These new capacities to perturb human cell’s genetics beyond their evolved functionality drives ongoing work to understand the biology and therapeutic potential of synthetic cell state engineering - in essence learning how to build new human genes tailor made for a specific cell and specific environment to drive previously inaccessible therapeutic cellular functions.
-
Daniel Rubin
Professor of Biomedical Data Science and of Radiology (Integrative Biomedical Imaging Informatics at Stanford), Emeritus
Current Research and Scholarly InterestsMy research interest is imaging informatics--ways computers can work with images to leverage their rich information content and to help physicians use images to guide personalized care. Work in our lab thus lies at the intersection of biomedical informatics and imaging science.
-
Mirabela Rusu
Assistant Professor of Radiology (Integrative Biomedical Imaging Informatics) and, by courtesy, of Biomedical Data Science and of Urology
Current Research and Scholarly InterestsDr. Mirabela Rusu focuses on developing analytic methods for biomedical data integration, with a particular interest in radiology-pathology fusion. Such integrative methods may be applied to create comprehensive multi-scale representations of biomedical processes and pathological conditions, thus enabling their in-depth characterization.
-
Raya Saab
Lindhard Family Professor of Pediatric Cancer Biology
BioOur laboratory focuses on investigating molecular mechanisms of oncogene-induced tumorigenesis and tumor suppressor pathways, and oncogenic signaling in the pediatric solid tumor rhabdomyosarcoma. Our earlier work identified the tumor suppressors p53 and p18Ink4c as inhibitors of Cyclin D1-driven tumorigenesis in a pineoblastoma model, through senescence induction, and highlighted distinct roles for the the RB and p53 pathways in induction and maintenance of oncogene-induced senescence. We also identified CDK2 as a potential target for inducing senescence in premalignant lesions to inhibit tumor progression.
Our current focus is on studying oncogenic signaling and tumor suppression in the childhood tumor rhabdomyosarcoma, to identify key mediators of invasion and metastasis, which is the most common cause of treatment failure clinically. We use preclinical in vitro and in vivo models, including murine and human cell lines, and mouse models of disease.
We have recently uncovered a paracrine role for rhabdomyosarcoma-secreted exosomes in impacting biology of stromal cells. Rhabdomyosarcoma-derived exosomes carry specific miRNA cargo that imparts an invasive and migratory phenotype on normal recipient fibroblasts, and proteomic analysis revealed specific and unique pathways relevant to the two different molecular rhabdomyosarcoma subtypes that are driven by distinct oncogenic pathways. We identified that the driver oncogene in fusion-positive rhabdomyosarcoma, PAX3-FOXO1, modulates exosome cargo to promote invasion, migration, and angiogenic properties, and identified specific microRNA and protein cargo acting as effectors of PAX3-FOXO1 exosome-mediated signaling, including modulation of oxidative stress response and cell survival signaling.
Our ongoing work is focused on interrogating specific paracrine signaling pathways and molecular mechanisms of metastatic disease progression in rhabdomyosarcoma, for potential therapeutic targeting. -
Chiara Sabatti
Professor of Biomedical Data Science and of Statistics
On Leave from 10/01/2025 To 03/27/2026Current Research and Scholarly InterestsStatistical models and reasoning are key to our understanding of the genetic basis of human traits. Modern high-throughput technology presents us with new opportunities and challenges. We develop statistical approaches for high dimensional data in the attempt of improving our understanding of the molecular basis of health related traits.
-
Julien Sage
Elaine and John Chambers Professor of Pediatric Cancer and Professor of Genetics
Current Research and Scholarly InterestsWe investigate the mechanisms by which normal cells become tumor cells, and we combine genetics, genomics, and proteomics approaches to investigate the differences between the proliferative response in response to injury and the hyperproliferative phenotype of cancer cells and to identify novel therapeutic targets in cancer cells.
-
Kathleen M. Sakamoto
Shelagh Galligan Professor in the School of Medicine
Current Research and Scholarly InterestsMy research focuses on the molecular pathways that regulate normal and aberrant blood cell development, including acute leukemia and bone marrow failure syndromes. We are also studying novel drugs for treatment of cancer.
-
Julia Salzman
Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology
On Leave from 09/01/2025 To 06/01/2026Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes
-
Serena Sanulli
Assistant Professor of Genetics
Current Research and Scholarly InterestsWe study the organizing principles of the genome and how these principles regulate cell identity and developmental switches. We combine Biochemistry and Biophysical methods such as NMR and Hydrogen-Deuterium Exchange-MS with Cell Biology, and Genetics to explore genome organization across length and time scales and understand how cells leverage the diverse biophysical properties of chromatin to regulate genome function.
-
Kavita Sarin, MD, PhD
Professor of Dermatology
Current Research and Scholarly InterestsMy research encompasses two main areas: 1) Using next-generation RNA, whole genome, and exome sequencing, we are investigating the genetic alterations involved in skin cancer progression, response to therapy, and other clinical outcomes and 2) We are developing and implementing genome-wide genetic risk prediction assessments for skin cancer into clinical use and studying the impact of this information on patient care.
-
Peter Sarnow
Burt and Marion Avery Professor of Immunology
Current Research and Scholarly InterestsOur laboratory studies virus-host interactions with an emphasis microRNA-mediated gene regulation and on translational control. The mechanism by which a liver-specific microRNA regulates hepatitis C virus genome replication is under intense scrutiny. In addition, the mechanism of internal ribosome entry in certain cellular and viral mRNAs and its biological role in growth and development is being investigated.
-
Ansuman Satpathy, MD, PhD
Associate Professor of Pathology
Current Research and Scholarly InterestsOur lab works at the interface of immunology, cancer biology, and genomics to study cellular and molecular mechanisms of the immune response to cancer. In particular, we are leveraging high-throughput genomic technologies to understand the dynamics of the tumor-specific T cell response to cancer antigens and immunotherapies (checkpoint blockade, CAR-T cells, and others). We are also interested in understanding the impact of immuno-editing on the heterogeneity and clonal evolution of cancer.
-
Lidia Schapira
Professor of Medicine (Oncology)
BioDr. Schapira is a medical oncologist with clinical expertise in the treatment of breast cancer. As the inaugural Director of Stanford's Cancer Survivorship Program, she has developed a thriving research and clinical program focused on optimizing health outcomes for people living with and beyond cancer. Dr. Schapira is interested in training future generations of physician-scientists as well as the broader community of practicing physicians through the design of innovative educational programs. Dr. Schapira's advocacy for people with cancer led to her appointment as Editor-in-Chief of the American Society of Clinical Oncology's website for the public,Cancer.Net, a position she held from 2015 until-2021. She served on the Board of Directors of the American Psychosocial Oncology Society and as Chair of the Psychosocial Interest Group of the Multinational Society for Supportive Care in Cancer. Dr. Schapira is particularily committed to reducing inequities in cancer outcomes and improve access to cancer care and cancer clinical trials. Dr. Schapira has published numerous manuscripts, lectures both nationally and internationally on issues of cancer survivorship and served as Associate Editor of the narrative section, Art of Oncology, for the Journal of Clinical Oncology from 2013 until 2023.
-
Gary Schoolnik
Professor of Medicine (Infectious Diseases), Emeritus
Current Research and Scholarly InterestsStructure-function analysis of bacterial adhesion proteins and toxins; design and synthesis of synthetic antigens; immunobiology of human papillomaviruses
-
Deborah Sellmeyer
Clinical Professor, Medicine - Endocrinology, Gerontology, & Metabolism
BioDr. Sellmeyer is an internationally recognized expert in Metabolic Bone Disease. She is a renowned clinician who joined the Stanford faculty in 2018 as a Professor of Medicine. She has been recognized for her clinical excellence with induction into the Miller Coulson Academy of Clinical Excellence while she was at Johns Hopkins. In addition to her clinical expertise, Dr. Sellmeyer maintains a research program that centers on the effect of nutrition and environmental factors on skeletal metabolism which she has investigated through both smaller CRC-based trials and large multi-center trials. Studies she has conducted have investigated the role of dietary sodium chloride, source of dietary protein (animal, vegetable, dairy, soy), role of dietary potassium and alkaline potassium salts, targeted thoracic exercises on kyphosis, whether structured exercise can prevent bone loss in premenopausal women treated for breast cancer, and studies validating nutritional assessment questionnaires. Her expertise as a clinical researcher has enabled development of a multi-disciplinary translational research team including basic scientists in the orthopedic department, junior faculty members with K grant funding, and basic scientists in the endocrine division to develop translational projects studying the effects of osteoporosis medications on basic elements of skeletal biology utilizing bone biopsies from treated individuals as well as clinical trials of novel therapies for rare bone disorders. Dr. Sellmeyer also is a esteemed educator, having received multiple teaching awards.
-
Kawin Setsompop
Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering
BioKawin Setsompop is a Professor of Radiology and, by courtesy, of Electrical Engineering. His research focuses on the development of novel MRI acquisition methods, with the goal of creating imaging technologies that can be used to help better understand brain structure and function for applications in Healthcare and Health sciences. He received his Master’s degree in Engineering Science from Oxford University and his PhD in Electrical Engineering and Computer Science from MIT. Prior to joining Stanford, he was a postdoctoral fellow and subsequently a faculty at the A.A. Martinos center for biomedical imaging, MGH, as well as part of the Harvard and MIT faculty. His group has pioneered several widely-used MRI acquisition technologies, a number of which have been successfully translated into FDA-approved clinical products on Siemens, GE, Phillips, United Imaging and Bruker MRI scanners worldwide. These technologies are being used daily to study the brain in both clinical and neuroscientific fields.