Stanford University
Showing 1-20 of 40 Results
-
Alex Aiken
Alcatel-Lucent Professor of Communications and Networking, Professor of Particle Physics and Astrophysics, and of Photon Science
BioAlex Aiken is the Alcatel-Lucent Professor of Computer Science at Stanford. Alex received his Bachelors degree in Computer Science and Music from Bowling Green State University in 1983 and his Ph.D. from Cornell University in 1988. Alex was a Research Staff Member at the IBM Almaden Research Center (1988-1993) and a Professor in the EECS department at UC Berkeley (1993-2003) before joining the Stanford faculty in 2003. His research interest is in areas related to programming languages.
-
Axel Brunger
Professor of Molecular and Cellular Physiology, of Neurology and Neurological Sciences, of Photon Science and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsOne of my primary goals is to elucidate the molecular mechanisms of synaptic neurotransmitter release by conducting imaging and single-molecule/particle reconstitution experiments, in conjunction with near-atomic resolution structural studies of the synaptic vesicle fusion machinery.
-
Philip Bucksbaum
Marguerite Blake Wilbur Professor of Natural Science and Professor of Photon Science, of Applied Physics and of Physics
BioPhil Bucksbaum holds the Marguerite Blake Wilbur Chair in Natural Science at Stanford University, with appointments in Physics, Applied Physics, and in Photon Science at SLAC. He conducts his research in the Stanford PULSE Institute (https://web.stanford.edu/~phbuck). He and his wife Roberta Morris live in Menlo Park, California. Their grown daughter lives in Toronto.
Bucksbaum was born and raised in Iowa, and graduated from Harvard in 1975. He attended U.C. Berkeley on a National Science Foundation Graduate Fellowship and received his Ph.D. in 1980 for atomic parity violation experiments under Professor Eugene Commins, with whom he also has co-authored a textbook, “Weak Interactions of Leptons and Quarks.” In 1981 he joined Bell Laboratories, where he pursued new applications of ultrafast coherent radiation from terahertz to vacuum ultraviolet, including time-resolved VUV ARPES, and strong-field laser-atom physics.
He joined the University of Michigan in 1990 and stayed for sixteen years, becoming Otto Laporte Collegiate Professor and then Peter Franken University Professor. He was founding Director of FOCUS, a National Science Foundation Physics Frontier Center, where he pioneered research using ultrafast lasers to control quantum systems. He also launched the first experiments in ultrafast x-ray science at the Advanced Photon Source at Argonne National Lab. In 2006 Bucksbaum moved to Stanford and SLAC, and organized the PULSE Institute to develop research utilizing the world’s first hard x-ray free-electron laser, LCLS. In addition to directing PULSE, he has previously served as Department Chair of Photon Science and Division Director for Chemical Science at SLAC. His current research is in laser interrogation of atoms and molecules to explore and image structure and dynamics on the femtosecond scale. He currently has more than 250 publications.
Bucksbaum is a Fellow of the APS and the Optical Society, and has been elected to the National Academy of Sciences and the American Academy of Arts and Sciences. He has held Guggenheim and Miller Fellowships, and received the Norman F. Ramsey Prize of the American Physical Society for his work in ultrafast and strong-field atomic and molecular physics. He served as the Optical Society President in 2014, and also served as the President of the American Physical Society in 2020. He has led or participated in many professional service activities, including NAS studies, national and international boards, initiatives, lectureships and editorships. -
Wah Chiu
Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.
-
James P. Cryan
Associate Professor of Photon Science
Current Role at StanfordPrincipal Investigator, Stanford PULSE Institute
Atomic, Molecular, and Optical Sciences Department Head, Linac Coherent Light Source. -
Yi Cui
Fortinet Founders Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, Senior Fellow at Woods, at Precourt and Professor, by courtesy, of Chemistry
BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.
-
Peter Dahlberg
Assistant Professor of Photon Science and of Structural Biology
BioPeter Dahlberg received his undergraduate degree at McGill University in 2011 and his Ph.D. in biophysics from the University of Chicago in 2016. He then came to Stanford to work with W. E. Moerner and Wah Chiu to develop correlative light and electron microscopy methods. These methods give highly specific information on the machines that fill cells and make them work. In 2021 he was awarded SLAC’s Panofsky Fellowship to continue his work on correlative microscopy. In 2023 he transitioned to a Staff Scientist role at SLAC. See the group website below for more information.
-
Thomas Devereaux
Professor of Photon Science, of Materials Science and Engineering and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsMy main research interests lie in the areas of theoretical condensed matter physics and computational physics. My research effort focuses on using the tools of computational physics to understand quantum materials. Fortunately, we are poised in an excellent position as the speed and cost of computers have allowed us to tackle heretofore unaddressed problems involving interacting systems. The goal of my research is to understand electron dynamics via a combination of analytical theory and numerical simulations to provide insight into materials of relevance to energy science. My group carries out numerical simulations on SIMES’ high-performance supercomputer and US and Canadian computational facilities. The specific focus of my group is the development of numerical methods and theories of photon-based spectroscopies of strongly correlated materials.
-
Angelo Dragone
Associate Professor of Photon Science and, by courtesy, of Electrical Engineering
BioAngelo Dragone is an Associate Professor of Photon Science and Electrical Engineering (by courtesy). He has over 20 years of experience in the research and development of Instrumentation for Scientific experiments. He received his Ph.D. in Microelectronics from the Polytechnic University of Bari, Italy, for his research on mixed-signal readout architecture for radiation detectors, conducted at Brookhaven National Laboratory. He worked in the Instrumentation Division at Brookhaven National Laboratory from 2004, before joining SLAC National Accelerator Laboratory in 2008. Over the past 15 years, he has been designing radiation detectors, with a focus on innovative architectural solutions for state-of-the-art scientific instruments and sensor interfaces. These solutions have applications in photon science, particle physics, medical imaging, and national security. At SLAC, he focused his research on designing high frame rate, large dynamic range X-ray detectors for the Linac Coherent Light Source SLAC X-ray Free-electron Laser facility. Since 2012, he has held a management position as head of the Integrated Circuits Department within the Instrumentation Division of the Technology Innovation Directorate (TID) at SLAC. During the past three years, Dr. Dragone has been working on the strategic R&D planning for the SLAC X-ray detectors Initiative and leads, as Program Director, TID Detector R&D, and the applied Microelectronics program. Recently, he has been appointed as Deputy Associate Lab Director for TID strategy. His current research interests are on ultra-fast X-ray detector architectures for X-ray Free-Electron Lasers applications and developing efficient, scalable systems with "smart" real-time processing capabilities. More broadly, he is interested in understanding the fundamental performance limits of radiation detection systems.
-
Leora Dresselhaus-Marais
Assistant Professor of Materials Science and Engineering, of Photon Science and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsMy group develops new methods to update old processes in metals manufacturing
-
Mike Dunne
Professor of Photon Science
On Leave from 10/18/2025 To 10/16/2026Current Research and Scholarly InterestsThe Linac Coherent Light Source (LCLS) is the world's first X-Ray Free Electron Laser. It represents a revolution in x-ray science. The x-rays produced by LCLS are a billion times brighter than can be produced by conventional sources, such as a synchrotron, and are delivered in ultrafast bursts- typically a few tens of femtoseconds (10^-15 seconds). This opens up transformational opportunities for the study of structural biology, quantum materials, ultrafast chemistry, and novel states of matter
-
Scott Fendorf
Terry Huffington Professor, Senior Associate Dean for Research, Senior Fellow at the Woods Institute for the Environment and Professor of Photon Science
Current Research and Scholarly InterestsSoil and environmental biogeochemistry
-
Kelly Gaffney
Professor of Photon Science and, by courtesy, of Chemistry
Current Research and Scholarly InterestsThe research team Professor Gaffney leads focuses on time resolved studies of chemical reactions. Recent advances in ultrafast x-ray lasers, like the LCLS at SLAC National Accelerator Laboratory, enable chemical reactions to be observed on the natural time and length scales of the chemical bond – femtoseconds and Ångströms. The knowledge gained from x-ray and optical laser studies will be used to spark new approaches to photo-catalysis and chemical synthesis.
-
Siegfried Glenzer
Professor of Photon Science and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsPlease see our website for detailed information: https://heds.slac.stanford.edu
-
Britt Hedman
Professor of Photon Science
BioBritt Hedman’s research program is focused on the development and applications of x-ray absorption and emission spectroscopies using synchrotron radiation, with a scientific emphasis primarily on study of the electronic and structural aspects of metal ion active sites in bioinorganic and biological systems. A common theme is to investigate how structure at molecular and macromolecular levels relates to function.
A major long-term focus has been the active site of the enzyme nitrogenase, and the various nitrogenase metal clusters, including elucidating the electronic and geometric structure of those that are formed and changed along their biosynthetic pathways. Other systems of systematic studies include iron-sulfur cluster containing enzymes, blue and multi-copper proteins, heme-copper oxidases, and iron-containing oxidases. Methods developments include x-ray absorption spectroscopy (edge and extended fine structure - or EXAFS), including the application of multiple-scattering analysis in EXAFS studies of metal clusters relevant to bioinorganic systems, the development of methodology for polarized single crystal x-ray absorption spectroscopy, and methodology and instrumentation development for soft- through hard-energy XAS.
Britt Hedman received her B.S and B.A. in Chemistry, M.Sc. in Inorganic Chemistry, and Ph.D. in Chemistry from the University of Umeå, Sweden. She was Assistant Professor (equivalent) in Inorganic Chemistry at the University of Umeå before coming to Stanford, initially as Senior Academic Scientific Staff, followed by appointed as Professor (Research) in 2002, and Professor of Photon Science in 2007. -
Tony Heinz
Director, Edward L. Ginzton Laboratory, Professor of Applied Physics, of Photon Science, and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsElectronic properties and dynamics of nanoscale materials, ultrafast lasers and spectroscopy.
-
Keith Hodgson
David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science
On Leave from 10/01/2025 To 03/31/2026BioCombining inorganic, biophysical and structural chemistry, Professor Keith Hodgson investigates how structure at molecular and macromolecular levels relates to function. Studies in the Hodgson lab have pioneered the use of synchrotron x-radiation to probe the electronic and structural environment of biomolecules. Recent efforts focus on the applications of x-ray diffraction, scattering and absorption spectroscopy to examine metalloproteins that are important in Earth’s biosphere, such as those that convert nitrogen to ammonia or methane to methanol.
Keith O. Hodgson was born in Virginia in 1947. He studied chemistry at the University of Virginia (B.S. 1969) and University of California, Berkeley (Ph.D. 1972), with a postdoctoral year at the ETH in Zurich. He joined the Stanford Chemistry Department faculty in 1973, starting up a program of fundamental research into the use of x-rays to study chemical and biological structure that made use of the unique capabilities of the Stanford Synchrotron Radiation Lightsource (SSRL). His lab carried out pioneering x-ray absorption and x-ray crystallographic studies of proteins, laying the foundation for a new field now in broad use worldwide. In the early eighties, he began development of one of the world's first synchrotron-based structural molecular biology research and user programs, centered at SSRL. He served as SSRL Director from 1998 to 2005, and SLAC National Accelerator Laboratory (SLAC) Deputy Director (2005-2007) and Associate Laboratory Director for Photon Science (2007-2011).
Today the Hodgson research group investigates how molecular structure at different organizational levels relates to biological and chemical function, using a variety of x-ray absorption, diffraction and scattering techniques. Typical of these molecular structural studies are investigations of metal ions as active sites of biomolecules. His research group develops and utilizes techniques such as x-ray absorption and emission spectroscopy (XAS and XES) to study the electronic and metrical details of a given metal ion in the biomolecule under a variety of natural conditions.
A major area of focus over many years, the active site of the enzyme nitrogenase is responsible for conversion of atmospheric di-nitrogen to ammonia. Using XAS studies at the S, Fe and Mo edge, the Hodgson group has worked to understand the electronic structure as a function of redox in this cluster. They have developed new methods to study long distances in the cluster within and outside the protein. Studies are ongoing to learn how this cluster functions during catalysis and interacts with substrates and inhibitors. Other components of the protein are also under active study.
Additional projects include the study of iron in dioxygen activation and oxidation within the binuclear iron-containing enzyme methane monooxygenase and in cytochrome oxidase. Lab members are also investigating the role of copper in electron transport and in dioxygen activation. Other studies include the electronic structure of iron-sulfur clusters in models and enzymes.
The research group is also focusing on using the next generation of x-ray light sources, the free electron laser. Such a light source, called the LCLS, is also located at SLAC. They are also developing new approaches using x-ray free electron laser radiation to image noncrystalline biomolecules and study chemical reactivity on ultrafast time scales.