Stanford University
Showing 201-250 of 1,348 Results
-
Jimmy Chen
Managing Director StorageX Initiative, Precourt Institute for Energy
BioJim Chen leads a number of energy programs at Stanford Energy,
including Stanford’s new Hydrogen Initiative; Stanford’s energy storage initiative,
StorageX; and Stanford’s integrated energy program, Stanford Energy Corporate
Affiliates (SECA). Dr. Chen was also the founding Managing Director of Bits & Watts,
Stanford’s initiative focusing on the grid of the 21st century, launched in 2016.
Dr. Chen is enthusiastic about the global energy transformation and building a more
sustainable society through innovation. At Stanford, Dr. Chen creates and expands
impactful global communities of practice that enable industrial-academic-government
collaboration in energy research and scale-up. Dr. Chen is also a leader in Stanford
Energy’s global events including its regional roundtables and Global Energy
Forum. Finally, Dr. Chen is deeply involved in Stanford’s innovation ecosystem,
advising student groups, start-up companies, and accelerators. Dr. Chen’s research
interests include hydrogen, energy storage, the circular economy, decarbonizing
transportation, and integrated energy systems. Dr. Chen’s teaching roles include
lecturing for Stanford’s Department of Materials Science and Engineering, and for
Stanford Energy’s Hydrogen Economy Seminar.
Dr. Chen is passionate about global energy entrepreneurship and innovation. He works
with energy agencies around the world promoting global collaboration, accelerating
innovation, and sparking entrepreneurship. He also serves on a number of advisory
councils, including on EPRI and GTI’s Low Carbon Research Initiative’s (LCRI)
technical advisory board.
Dr. Chen came to Stanford University after 25 years in industry, bringing a broad
background in energy and technology, with a specialization in technology and product
development. He has held technical positions at Lawrence Berkeley Labs, GTE Labs,
IBM, and AT&T Bell Labs, as well as technology executive positions at both starts-ups
and Fortune 500 companies, including FormFactor and Eaton.
Dr. Chen received a PhD from the Massachusetts Institute of Technology and MS from
the University of California, Berkeley — both in materials science and engineering —
and holds a BS from the University of California, Berkeley in electrical engineering. -
Zhenlin Chen
Ph.D. Student in Energy Science and Engineering, admitted Summer 2023
BioZhenlin (Richard) Chen is a Ph.D. candidate at Stanford's Adam Brandt lab, focuses on greenhouse gas emissions from oil and gas. His work primarily revolves around evaluating ground sensor technologies for methane detection and quantification ability. His methodological approach blends engineering principles, field data collection, and applied statistics. Chen is exploring AI-driven frameworks, particularly large language models, to refine energy data extraction and enhance the OPGEE model through private data fine-tuning and reinforcement learning. His emphasis remains on domain-specific tasks, aiming for efficiency in terms of latency and cost. He pursued his undergraduate studies in environmental science at Cornell University and holds a master's in Atmosphere and Energy Engineering from Stanford.
-
Jing Cheng
Postdoctoral Scholar, Earth System Science
BioPostdoctoral Scholar | climate change impacts and adaption | net-zero energy and food systems | air pollution | CDR |
-
Christopher Chidsey
Associate Professor of Chemistry, Emeritus
Current Research and Scholarly InterestsThe Chidsey group research interest is to build the chemical base for molecular electronics. To accomplish this, we synthesize the molecular and nanoscopic systems, build the analytical tools and develop the theoretical understanding with which to study electron transfer between electrodes and among redox species through insulating molecular bridges
-
Steven Chu
William R. Kenan Jr. Professor, Professor of Molecular and Cellular Physiology and of Energy Science and Engineering
Current Research and Scholarly InterestsSynthesis, functionalization and applications of nanoparticle bioprobes for molecular cellular in vivo imaging in biology and biomedicine. Linear and nonlinear difference frequency mixing ultrasound imaging. Lithium metal-sulfur batteries, new approaches to electrochemical splitting of water. CO2 reduction, lithium extraction from salt water
-
William Chueh
Director, Precourt Institute for Energy, Associate Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, and Senior Fellow at the Precourt Institute for Energy
BioThe availability of low-cost but intermittent renewable electricity (e.g., derived from solar and wind) underscores the grand challenge to store and dispatch energy so that it is available when and where it is needed. Redox-active materials promise the efficient transformation between electrical, chemical, and thermal energy, and are at the heart of carbon-neutral energy cycles. Understanding design rules that govern materials chemistry and architecture holds the key towards rationally optimizing technologies such as batteries, fuel cells, electrolyzers, and novel thermodynamic cycles. Electrochemical and chemical reactions involved in these technologies span diverse length and time scales, ranging from Ångströms to meters and from picoseconds to years. As such, establishing a unified, predictive framework has been a major challenge. The central question unifying our research is: “can we understand and engineer redox reactions at the levels of electrons, ions, molecules, particles and devices using a bottom-up approach?” Our approach integrates novel synthesis, fabrication, characterization, modeling and analytics to understand molecular pathways and interfacial structure, and to bridge fundamentals to energy storage and conversion technologies by establishing new design rules.
-
Jon Claerbout
Cecil H. and Ida M. Green Professor of Geophysics, Emeritus
Current Research and Scholarly InterestsReflection Seismology
-
Bruce Clemens
Walter B. Reinhold Professor in the School of Engineering, Emeritus and Academic Secretary to the University
BioClemens studies growth and structure of thin film, interface and nanostructured materials for catalytic, electronic and photovoltaic applications. He and his group investigate phase transitions and kinetics in nanostructured materials, and perform nanoparticle engineering for hydrogen storage and catalysis. Recently he and his collaborators have developed nano-portals for efficient injection of hydrogen into storage media, dual-phase nanoparticles for catalysis, amorphous metal electrodes for semiconductor devices, and a lift-off process for forming free-standing, single-crystal films of compound semiconductors.
-
Collin Closek
Basic Life Scientist
BioI am a Staff Scientist at the Stanford Center for Ocean Solutions. My research focuses on optimizing molecular and computational tools to address ecological and evolutionary questions. I have published in the areas of environmental change, ocean health, biodiversity, disease, eDNA, -omics, and aquaculture. I hold a B.S. in Biology from the University of Georgia, began my doctoral studies at the University of California, Merced, and earned my Ph.D. at Penn State. I completed two postdoctoral appointments, first as a joint-postdoctoral researcher at University of Washington's School of Aquatic and Fishery Sciences and University of Maryland's Institute for Marine and Environmental Technology. Second, I completed advanced collaborative training as a postdoctoral scholar at Stanford University’s Woods Institute for the Environment in conjunction with the Department of Civil and Environmental Engineering. I enjoy exploring and teaching about the natural world, its diversity, complexities, and the challenges faced by our environment.
-
David Cohen
WSD-HANDA Professor of Human Rights and International Justice, Professor of Environmental Social Sciences and Senior Fellow, by courtesy, at the Freeman Spogli Institute for International Studies
Current Research and Scholarly InterestsCurrent research includes book projects on World War II war crimes trials; the Tokyo and Nuremberg International Military Tribunals; analysis of blasphemy prosecutions in Indonesia; analysis of the misuse of electronic communication, criminal defamation, lese majeste, blasphemy and asspociated laws in Southeast Asia; international best practices on whistleblower protection and justiuce collaborators in corruption cases in ASEAN; the UN justice process in East Timor under the Special Panels for Serious Crimes; comparative study of strategic decision making in American, British, and Japanese policy circles in WWII; analysis of the Judgment in Case 002/2 at the Khmer Rouge Tribunal in Cambodia.
-
Aaron Cole
Director of Web & Application Services, Stanford Doerr School of Sustainability - Dean's Office
Current Role at StanfordDirector of Web & Application Services, School Of Earth, Energy & Environmental Sciences
-
Sara Constantino
Assistant Professor of Environmental Social Sciences and Center Fellow, by courtesy, at the Woods Institute for the Environment
BioSara Constantino is an assistant professor at the Stanford Doerr School of Sustainability in the Department of Environmental Social Sciences and a visiting research scholar at Princeton's School of Public and International Affairs. She is also a faculty affiliate at SPARQ and the Social Science Environmental Health Research Institute. She has an interdisciplinary background at the intersection of economics, psychology, and environmental policy and politics. Her research focuses on understanding the interplay between individual, collective, institutional and ecological factors, including how they shape preferences, decisions, experiences and resilience to extreme events or shocks. In recent and ongoing studies, she is looking at the role of polarization, social norms and governance in stimulating or stifling climate action, including both adaptation and mitigation, and what conditions lead groups mobilize to shape policy and other outcomes. She also works on the impacts and politics of guaranteed income and other cash transfer programs. Prior to starting at Stanford, she was an assistant professor in the School of Public Policy and Urban Affairs and the Department of Psychology at Northeastern University and an associate research scholar at Princeton’s School of Public and International Affairs. Before this, she was a senior research fellow in guaranteed income with the Jain Family Institute, a founding editor at Nature Human Behavior, and a research coordinator with the Institute for Fiscal Studies. She received her bachelor’s degree in economics from McGill University, a master’s degree in economics from University College London, a Ph.D. in cognitive and decision sciences from New York University, and did a postdoc focused on environmental policy, politics and decision-making at Princeton University.
-
Dylan Marshall Crain
Ph.D. Student in Energy Resources Engineering, admitted Autumn 2022
Current Research and Scholarly InterestsMy current research revolves around optimizing the monitoring design of Carbon Capture and Sequestration (CCS) projects in such a way that the posterior (after data assimilation) predictions are as close to reality as can be hoped for.
In CCS projects within the U.S., it is important to have monitoring plan, which can consist of wells with pressure, saturation, salinity, et cetera sensors, seismic lines, or gravimetric above-ground measurements, before any injection has begun into the subsurface. This is due to the permitting requirements that must be satisfied before operations are begun.
Due to this constraint, any monitoring optimization (at least initially) needs to be determined using only a prior (highly uncertain) understanding of the subsurface. This makes the optimization much more challenging. We utilize a prior optimization scheme from a previous student which allows us to optimize a monitoring plan using only prior information to get the minimized, expected uncertainty reduction in the posterior models for a given quantity of interest. This scheme is limited by some Gaussian assumptions. We optimize it using a genetic algorithm.
From this point, with the monitoring plan established, the information gathered from the optimized monitoring scheme (using only monitoring wells at the moment) is used to history match (data assimilate) our understanding of the subsurface. The results can be used to predict the CO2 plume flow and behavior into the future.
This work was initially developed to assist a project in Illinois that is currently seeking Class VI injection well permits in the self-same state in order to begin injecting CO2 produced from two companies paying for the work from the Illinois Geological Survey.