Bio-X


Showing 1-20 of 841 Results

  • Aijaz Ahmed, MD

    Aijaz Ahmed, MD

    Professor of Medicine (Gastroenterology and Hepatology) at the Stanford University Medical Center

    BioMy research interests include nonalcoholic fatty liver disease (NAFLD) and viral hepatitis. I have focused my research to database analysis/outcomes and translational research in these areas. While database analysis has been critical in outlining trends in NAFLD and viral hepatitis epidemiology, translational research has provided insight into disease mechanism and future therapies. I collaborate with several basic science colleagues and act as clinical mentor for young investigators involved in translational research. I am also interested and act as adjunct faculty in biodesign and health policy. I have participated in several clinical trials as a co-investigator.

  • Alex Aiken

    Alex Aiken

    Alcatel-Lucent Professor in Communications and Networking and Professor of Particle Physics and Astrophysics and of Photon Science

    BioAiken's research focuses on developing techniques for the construction of reliable software systems. His interests include both static and dynamic methods of analyzing programs, and span both detecting errors and verifying the absence of errors in software. Most of his research combines a theoretical component (for example, proving the soundness of an analysis technique) and a practical component, which often involves the implementation and measurement of advanced program analysis algorithms. Finally, his research also extends to the design of new programming languages and programming techniques in which it is easier to write software that can be checked for a wide variety of errors.

  • Ash A. Alizadeh, MD/PhD

    Ash A. Alizadeh, MD/PhD

    Associate Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsMy research is focused on attaining a better understanding of the initiation, maintenance, and progression of tumors, and their response to current therapies toward improving future treatment strategies. In this effort, I employ tools from functional genomics, computational biology, molecular genetics, and mouse models.

    Clinically, I specialize in the care of patients with lymphomas, working on translating our findings in prospective cancer clinical trials.

  • Russ B. Altman

    Russ B. Altman

    Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine (General Medical Discipline), of Biomedical Data Science and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/

  • Katrin Andreasson

    Katrin Andreasson

    Professor of Neurology at the Stanford University Medical Center

    Current Research and Scholarly InterestsOur research focuses on the investigation of the brain’s innate immune response, and the role that maladaptive microglial activity plays in initiation and progression of neurological disease.

  • Jason Andrews

    Jason Andrews

    Assistant Professor of Medicine (Infectious Diseases) and, by courtesy, of Health Research and Policy (Epidemiology)

    Current Research and Scholarly InterestsOur laboratory aims to develop and test innovative approaches to the diagnosis, treatment and control of infectious diseases in resource-limited settings. We draw upon multiple fields including mathematical modeling, microbial genetics, field epidemiology, statistical inference and biodesign to work on challenging problems in infectious diseases, with an emphasis on tuberculosis and tropical diseases.

  • Thomas P. Andriacchi

    Thomas P. Andriacchi

    Professor of Mechanical Engineering and of Orthopaedic Surgery, Emeritus

    Current Research and Scholarly InterestsProfessor Andriacchi's research focuses on the biomechanics of human locomotion and applications to medical devices, sports injury, osteoarthritis, the anterior cruciate ligament and low cost prosthetic limbs

  • Martin S. Angst

    Martin S. Angst

    Professor of Anesthesiology, Perioperative and Pain Medicine at the Stanford University Medical Center

    Current Research and Scholarly InterestsOur laboratory's current transformative research efforts focus on studying immune health in the context of surgery and anesthesia.

  • Justin P. Annes M.D., Ph.D.

    Justin P. Annes M.D., Ph.D.

    Assistant Professor of Medicine (Endocrinology)

    Current Research and Scholarly InterestsThe ANNES LABORATORY of Molecular Endocrinology: Leveraging Chemical Biology to Treat Endocrine Disorders

    DIABETES
    The prevalence of diabetes is increasing at a staggering rate. By the year 2050 an astounding 25% of Americans will be diabetic. The goal of my research is to uncover therapeutic strategies to stymie the ensuing diabetes epidemic. To achieve this goal we have developed a variety of innovate experimental approaches to uncover novel approaches to curing diabetes.

    (1) Beta-Cell Regeneration: Diabetes results from either an absolute or relative deficiency in insulin production. Our therapeutic strategy is to stimulate the regeneration of insulin-producing beta-cells to enhance an individual’s insulin secretion capacity. We have developed a unique high-throughput chemical screening platform which we use to identify small molecules that promote beta-cell growth. This work has led to the identification of key molecular pathways (therapeutic targets) and candidate drugs that promote the growth and regeneration of islet beta-cells. Our goal is to utilize these discoveries to treat and prevent diabetes.

    (2) The Metabolic Syndrome: A major cause of the diabetes epidemic is the rise in obesity which leads to a cluster of diabetes- and cardiovascular disease-related metabolic abnormalities that shorten life expectancy. These physiologic aberrations are collectively termed the Metabolic Syndrome (MS). My laboratory has developed an original in vivo screening platform t to identify novel hormones that influence the behaviors (excess caloric consumption, deficient exercise and disrupted sleep-wake cycles) and the metabolic abnormalities caused by obesity. We aim to manipulate these hormone levels to prevent the development and detrimental consequences of the MS.

    HEREDIATY PARAGAGLIOMA SYNDROME
    The Hereditary Paraganglioma Syndrome (hPGL) is a rare genetic cancer syndrome that is most commonly caused by a defect in mitochondrial metabolism. Our goal is to understand how altered cellular metabolism leads to the development of cancer. Although hPGL is uncommon, it serves as an excellent model for the abnormal metabolic behavior displayed by nearly all cancers. Our goal is to develop novel therapeutic strategies that target the abnormal behavior of cancer cells. In the laboratory we have developed hPGL mouse models and use high throughput chemical screening to identify the therapeutic susceptibilities that result from the abnormal metabolic behavior of cancer cells.

    As a physician scientist trained in clinical genetics I have developed expertise in hereditary endocrine disorders and devoted my efforts to treating families affected by the hPGL syndrome. By leveraging our laboratory expertise in the hPGL syndrome, our care for individuals who have inherited the hPGL syndrome is at the forefront of medicine. Our goal is to translate our laboratory discoveries to the treatment of affected families.

  • Eric Andrew Appel

    Eric Andrew Appel

    Assistant Professor of Material Science and Engineering and, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsThe underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.

  • Amin Arbabian

    Amin Arbabian

    Assistant Professor of Electrical Engineering

    Current Research and Scholarly InterestsMy group's research covers RF circuits and system design for (1) biomedical, (2) sensing, and (3) Internet of Things (IoT) applications.

  • Ronald L. Ariagno

    Ronald L. Ariagno

    Professor (Clinical) of Pediatrics, Emeritus

    Current Research and Scholarly InterestsDevelopmental Physiology and Sudden Infant Death Syndrome Research Laboratory closed in 2008.

    Current effort, as Chair of Task Force and neonatal consult at the FDA, is to establish through consensus a culture of investigation and collaboration for all clinical neonatology practices: academic, corporate and community based to maximize the opportunity to participate in research effort needed for the regulatory approval of neonatal therapeutics to improve the outcome of critically ill infants.

  • Kevin Arrigo

    Kevin Arrigo

    Donald and Donald M. Steel Professor in Earth Sciences and Director, Earth Systems Program

    Current Research and Scholarly InterestsInvestigates role of ocean biology in gobal carbon and nutrient cycles.

  • Steven Artandi

    Steven Artandi

    Jerome and Daisy Low Gilbert Professor and Professor of Biochemistry

    Current Research and Scholarly InterestsTelomeres are nucleoprotein complexes that protect chromosome ends and shorten with cell division and aging. We are interested in how telomere shortening influences cancer, stem cell function, aging and human disease. Telomerase is a reverse transcriptase that synthesizes telomere repeats and is expressed in stem cells and in cancer. We have found that telomerase also regulates stem cells and we are pursuing the function of telomerase through diverse genetic and biochemical approaches.

  • Ann M. Arvin

    Ann M. Arvin

    Vice Provost and Dean of Research, Lucile Salter Packard Professor of Pediatrics and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsOur laboratory investigates the pathogenesis of varicella zoster virus (VZV) infection, focusing on the functional roles of particular viral gene products in pathogenesis and virus-cell interactions in differentiated human cells in humans and in Scid-hu mouse models of VZV cell tropisms in vivo, and the immunobiology of VZV infections.

  • Euan A. Ashley

    Euan A. Ashley

    Professor of Medicine (Cardiovascular) and, by courtesy, of Pathology at the Stanford University Medical Center

    Current Research and Scholarly InterestsThe Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve diagnosis of genetic disease and to personalize the practice of medicine. We also use network approaches to characterize biology. The wet bench is where we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality of our favorite targets.

  • Scott W. Atlas

    Scott W. Atlas

    Senior Fellow at the Hoover Institution

    Current Research and Scholarly InterestsDr. Atlas's investigates the impact of government and the private sector on access, quality, and pricing in health care, both within the US and globally, and the effects of government policies and the changing marketplace on technology-based innovations in medicine. His medical research has centered on advanced applications of new MRI technologies and the key economic issues related to the future of such technology-based advances.

  • Laura Attardi

    Laura Attardi

    Professor of Radiation Oncology (Radiation and Cancer Biology) and of Genetics

    Current Research and Scholarly InterestsOur research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.