Bio-X


Showing 1-20 of 1,071 Results

  • Geoffrey Abrams, MD

    Geoffrey Abrams, MD

    Associate Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsDr. Abrams' research is focused on elucidating the pathobiology behind tendinoapthy and developing new treatment modalities for the disease. Specifically, his team is studying the role of micro-RNA as it relates to chronic inflammation and stem cell differentiation in the development and perpetuation of chronic tendinopathy.

  • Monther Abu-Remaileh

    Monther Abu-Remaileh

    Assistant Professor of Chemical Engineering and of Genetics

    Current Research and Scholarly InterestsWe study the role of the lysosome in metabolic adaptation using subcellular omics approaches, functional genomics and innovative biochemical tools. We apply this knowledge to understand how lysosomal dysfunction leads to human diseases including neurodegeneration, cancer and metabolic syndrome.

  • Ehsan Adeli

    Ehsan Adeli

    Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Public Mental Health and Populations Sciences)

    Current Research and Scholarly InterestsMy research lies in the intersection of Machine Learning, Computer Vision, Healthcare, Ambient Intelligence, and Computational Neuroscience.

  • Aijaz Ahmed, MD

    Aijaz Ahmed, MD

    Professor of Medicine (Gastroenterology and Hepatology)

    BioDr. Ahmed is an internationally recognized hepatologist with expertise in the treatment of acute and chronic liver diseases. He is a board-certified specialist in gastroenterology and hepatology, transplant hepatology, and obesity medicine. Currently, he serves as the Medical Director of the Adult Liver Transplant Program at Stanford University.

    Dr. Ahmed graduated from Dow Medical College, Karachi, Pakistan. He completed his residency training in Internal Medicine at Brown University, Providence, RI and fellowship training in Gastroenterology and Hepatology at Stanford University. During his fellowship, he focused on clinical and research training in General and Transplant Hepatology.

    For patients under his care, Dr. Ahmed remains dedicated to creating a personalized, comprehensive, and above-all a compassionate treatment plan. He outlines the diagnostic and follow-up management pathway in an individualized fashion; he updates his patients and their family/support at each step of the decision-making process; and he focuses on prioritizing the wishes of his patients and their family/support for an optimal outcome and quality of life.

    Dr. Ahmed remains clinically active and has been instrumental in establishing a wide network of hepatology outreach clinics in remote and underserved regions of California and Nevada.

    In addition to his patient care responsibilities, Dr. Ahmed remains committed to the educational mission of Stanford ford University. He remains deeply interested in mentoring trainees and students al levels from undergraduates to trainee physicians and junior colleagues. Dr. Ahmed has received several teaching awards during his career.

    Dr. Ahmed’s research interests include 1) multidisciplinary approach to nonalcoholic fatty liver disease (NAFLD), 2) disparities in the management of chronic liver disease, 3) improving screening and management of hepatocellular carcinoma (HCC), and 4) outcomes research in NAFLD, HCC, viral hepatitis, alcoholic liver disease, and liver transplantation. He heads a busy and productive outcomes research team. In addition, he collaborates with basic scientists and is participating in several translational research projects at Stanford University.

    He has published his findings in textbooks, abstracts, case reports, and high- profile medical journals including Gastroenterology, Journal of Hepatology, Hepatology American Journal of Gastroenterology, and other well-renowned peer-reviewed publications.

    Dr. Ahmed and his team has made presentations to his peers at many national and international conferences: the American Association for the Study of Liver Disease, International Liver Congress, European Association for the Study of the Liver, Asian Pacific Association for the Study of the Liver, and more. His presentations have addressed leading-edge approaches to the treatment of chronic liver disease, liver cancer, and liver failure. He also has presented his insights into the gastrointestinal impact of COVID-19.

    For his clinical, research, and teaching achievements, Dr. Ahmed has earned extensive recognition. His honors include being named as one of America’s Top Physicians by the Consumers’ Research Council of America.

    He is an active member of the American Gastroenterological Association and the American Association for the Study of Liver Diseases.

  • Alex Aiken

    Alex Aiken

    Alcatel-Lucent Professor of Communications and Networking, Professor of Particle Physics and Astrophysics, and of Photon Science

    BioAlex Aiken is the Alcatel-Lucent Professor of Computer Science at Stanford. Alex received his Bachelors degree in Computer Science and Music from Bowling Green State University in 1983 and his Ph.D. from Cornell University in 1988. Alex was a Research Staff Member at the IBM Almaden Research Center (1988-1993) and a Professor in the EECS department at UC Berkeley (1993-2003) before joining the Stanford faculty in 2003. His research interest is in areas related to programming languages.

  • Raag Airan

    Raag Airan

    Assistant Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Psychiatry and Behavioral Sciences and of Materials Science and Engineering

    Current Research and Scholarly InterestsOur goal is to develop and clinically implement new technologies for high-precision and noninvasive intervention upon the nervous system. Every few millimeters of the brain is functionally distinct, and different parts of the brain may have counteracting responses to therapy. To better match our therapies to neuroscience, we develop techniques that allow intervention upon only the right part of the nervous system at the right time, using technologies like focused ultrasound and nanotechnology.

  • Ash A. Alizadeh, MD/PhD

    Ash A. Alizadeh, MD/PhD

    Moghadam Family Professor

    Current Research and Scholarly InterestsMy research is focused on attaining a better understanding of the initiation, maintenance, and progression of tumors, and their response to current therapies toward improving future treatment strategies. In this effort, I employ tools from functional genomics, computational biology, molecular genetics, and mouse models.

    Clinically, I specialize in the care of patients with lymphomas, working on translating our findings in prospective cancer clinical trials.

  • Nicolas Altemose

    Nicolas Altemose

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsThe Altemose Lab develops new experimental and analytical tools to study how chromatin proteins organize and regulate complex regions of the human genome.

  • Russ B. Altman

    Russ B. Altman

    Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine, of Biomedical Data Science, Senior Fellow at the Stanford Institute for HAI and Professor, by courtesy, of Computer Science

    Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/

  • Derek F. Amanatullah, M.D., Ph.D.

    Derek F. Amanatullah, M.D., Ph.D.

    Associate Professor of Orthopaedic Surgery

    BioDr. Amanatullah specializes in hip and knee replacements for individuals with osteoarthritis, rheumatoid arthritis, infectious arthritis and avascular necrosis. He also performs revision surgeries of knee and hip implants with problems.

  • Kanwaljeet S. Anand

    Kanwaljeet S. Anand

    Professor of Pediatrics (Pediatric Critical Care) and of Anesthesiology, Perioperative and Pain Medicine
    On Partial Leave from 01/04/2025 To 03/02/2025

    Current Research and Scholarly InterestsDr. Anand is a translational clinical researcher who pioneered research on the endocrine-metabolic stress responses of infants undergoing surgery and developed the first-ever scientific rationale for pain perception in early life. This provided a framework for newer methods of pain assessment, numerous clinical trials of analgesia/anesthesia in newborns, infants and older children. His research focus over the past 30+ years has contributed fundamental knowledge about pediatric pain/stress, long-term effects of pain in early life, management of pain, mechanisms for opioid tolerance and withdrawal. Current projects in his laboratory are focused on developing biomarkers for repetitive pain/stress in critically ill children and the mechanisms underlying sedative/anesthetic neurotoxicity in the immature brain. He designed and directed many randomized clinical trials (RCT), including the largest-ever pediatric analgesia trial studying morphine therapy in ventilated preterm neonates. He has extensive experience in clinical and translational research from participating in collaborative networks funded by NIMH, NINDS, or NICHD, a track-record of excellent collaboration across multiple disciplines, while achieving success with large research teams like the Collaborative Pediatric Critical Care Research Network (CPCCRN). He played a leadership roles in CANDLE (Condition Affecting Neuro-Development & Learning in Early infancy) and other activities of the Urban Child Institute and UT Neuroscience Institute. More recently, he led the NeoOpioid Consortium funded by the European Commission, which collected data from 243 NICUs in 18 European countries.

  • Katrin Andreasson

    Katrin Andreasson

    Edward F. and Irene Thiele Pimley Professor of Neurology and Neurological Sciences

    Current Research and Scholarly InterestsOur research focuses on understanding how immune responses initiate and accelerate synaptic and neuronal injury in age-related neurodegeneration, including models of Alzheimer's disease and Parkinson's disease. We also focus on the role of immune responses in aggravating brain injury in models of stroke. Our goal is the identification of critical immune pathways that function in neurologic disorders and that can be targeted to elicit disease modifying effects.

  • Jason Andrews

    Jason Andrews

    Professor of Medicine (Infectious Diseases) and, by courtesy, of Epidemology

    Current Research and Scholarly InterestsOur laboratory aims to develop and test innovative approaches to the diagnosis, treatment and control of infectious diseases in resource-limited settings. We draw upon multiple fields including mathematical modeling, microbial genetics, field epidemiology, statistical inference and biodesign to work on challenging problems in infectious diseases, with an emphasis on tuberculosis and tropical diseases.

  • Thomas P. Andriacchi

    Thomas P. Andriacchi

    Professor of Mechanical Engineering and of Orthopaedic Surgery, Emeritus

    Current Research and Scholarly InterestsProfessor Andriacchi's research focuses on the biomechanics of human locomotion and applications to medical devices, sports injury, osteoarthritis, the anterior cruciate ligament and low cost prosthetic limbs

  • Lay Teng Ang

    Lay Teng Ang

    Assistant Professor of Urology

    BioAs a stem cell biologist, I aim to understand the mechanisms through which stem cells differentiate into progressively specialized cell types and to harness this knowledge to artificially generate pure populations of desired cell types from stem cells. My work over the past ten years has centered on pluripotent stem cells (PSCs, which include embryonic and pluripotent stem cells), which can generate any of the hundreds of diverse cell types in the body. However, it has been notoriously challenging to guide PSCs to differentiate into a pure population of a given cell type. Current differentiation strategies typically generate heterogeneous cell populations unsuitable for basic research or clinical applications. To address this challenge, I mapped the cascade of branching lineage choices through which PSCs differentiate into various endodermal and mesodermal cell types. I then developed effective methods to differentiate PSCs into specific lineages by providing the extracellular signal(s) that specify a given lineage while inhibiting the signals that induce the alternate fate(s), enabling the generation of highly-pure human heart and bone (Loh & Chen et al., 2016; Cell) and liver (Loh & Ang et al., 2014; Cell Stem Cell) from PSCs. My laboratory currently focuses on differentiating human PSCs into liver progenitors (Ang et al., 2018; Cell Reports) and blood vessel cells (Ang et al., 2022; Cell).

    I earned my Ph.D. jointly from the University of Cambridge and A*STAR and was subsequently appointed as a Research Fellow and, later, a Senior Research Fellow at the Genome Institute of Singapore. I then moved my laboratory to Stanford University as a Siebel Investigator and Instructor at the Stanford Institute for Stem Cell Biology & Regenerative Medicine. In 2024, I am jointly appointed in the Stanford Department of Urology and Stem Cell Institute as an Assistant Professor. My laboratory has been supported by the Stanford Maternal & Child Health Research Institute, California Institute for Regenerative Medicine, Siebel Investigatorship, Additional Ventures, and other sources.

  • Michael Angelo

    Michael Angelo

    Associate Professor of Pathology

    BioMichael Angelo, MD PhD is a board-certified pathologist and assistant professor in the department of Pathology at Stanford University School of Medicine. Dr. Angelo is a leader in high dimensional imaging with expertise in tissue homeostasis, tumor immunology, and infectious disease. His lab has pioneered the construction and development of Multiplexed Ion Beam Imaging by time of flight (MIBI-TOF). MIBI-TOF uses secondary ion mass spectrometry and metal-tagged antibodies to achieve rapid, simultaneous imaging of dozens of proteins at subcellular resolution. In recognition of this achievement, Dr. Angelo received the NIH Director’s Early Independence award in 2014. His lab has since used this novel technology to discover previously unknown rule sets governing the spatial organization and cellular composition of immune, stromal, and tumor cells within the tumor microenvironment in triple negative breast cancer. These findings were found to be predictive of single cell expression of several immunotherapy drug targets and of 10-year overall survival. This effort has led to ongoing work aimed at elucidating structural mechanisms in the TME that promote recruitment of cancer associated fibroblasts, tumor associated macrophages, and extracellular matrix remodeling. Dr. Angelo is the recipient of the 2020 DOD Era of Hope Award and a principal investigator on multiple extramural awards from the National Cancer Institute, Breast Cancer Research Foundation, Parker Institute for Cancer Immunotherapy, the Bill and Melinda Gates Foundation, and the Human Biomolecular Atlas (HuBMAP) initiative.

  • Martin S. Angst

    Martin S. Angst

    Professor of Anesthesiology, Perioperative and Pain Medicine (MSD)

    Current Research and Scholarly InterestsOur laboratory studies biological and clinical determinants of human resilience using surgery as an injury model.

  • Justin P. Annes M.D., Ph.D.

    Justin P. Annes M.D., Ph.D.

    Associate Professor of Medicine (Endocrinology)
    On Partial Leave from 05/01/2024 To 02/28/2025

    Current Research and Scholarly InterestsThe ANNES LABORATORY of Molecular Endocrinology: Leveraging Chemical Biology to Treat Endocrine Disorders

    DIABETES
    The prevalence of diabetes is increasing at a staggering rate. By the year 2050 an astounding 25% of Americans will be diabetic. The goal of my research is to uncover therapeutic strategies to stymie the ensuing diabetes epidemic. To achieve this goal we have developed a variety of innovate experimental approaches to uncover novel approaches to curing diabetes.

    (1) Beta-Cell Regeneration: Diabetes results from either an absolute or relative deficiency in insulin production. Our therapeutic strategy is to stimulate the regeneration of insulin-producing beta-cells to enhance an individual’s insulin secretion capacity. We have developed a unique high-throughput chemical screening platform which we use to identify small molecules that promote beta-cell growth. This work has led to the identification of key molecular pathways (therapeutic targets) and candidate drugs that promote the growth and regeneration of islet beta-cells. Our goal is to utilize these discoveries to treat and prevent diabetes.

    (2) The Metabolic Syndrome: A major cause of the diabetes epidemic is the rise in obesity which leads to a cluster of diabetes- and cardiovascular disease-related metabolic abnormalities that shorten life expectancy. These physiologic aberrations are collectively termed the Metabolic Syndrome (MS). My laboratory has developed an original in vivo screening platform t to identify novel hormones that influence the behaviors (excess caloric consumption, deficient exercise and disrupted sleep-wake cycles) and the metabolic abnormalities caused by obesity. We aim to manipulate these hormone levels to prevent the development and detrimental consequences of the MS.

    HEREDIATY PARAGAGLIOMA SYNDROME
    The Hereditary Paraganglioma Syndrome (hPGL) is a rare genetic cancer syndrome that is most commonly caused by a defect in mitochondrial metabolism. Our goal is to understand how altered cellular metabolism leads to the development of cancer. Although hPGL is uncommon, it serves as an excellent model for the abnormal metabolic behavior displayed by nearly all cancers. Our goal is to develop novel therapeutic strategies that target the abnormal behavior of cancer cells. In the laboratory we have developed hPGL mouse models and use high throughput chemical screening to identify the therapeutic susceptibilities that result from the abnormal metabolic behavior of cancer cells.

    As a physician scientist trained in clinical genetics I have developed expertise in hereditary endocrine disorders and devoted my efforts to treating families affected by the hPGL syndrome. By leveraging our laboratory expertise in the hPGL syndrome, our care for individuals who have inherited the hPGL syndrome is at the forefront of medicine. Our goal is to translate our laboratory discoveries to the treatment of affected families.