Wu Tsai Neurosciences Institute
Showing 371-380 of 597 Results
-
David Myung, MD, PhD
Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
Mesenchymal stem cell therapy for corneal and ocular surface regeneration
Engineered biomolecule therapies for promote corneal wound healing
Telemedicine in ophthalmology -
Claude M. Nagamine, DVM, PhD
Associate Professor of Comparative Medicine
Current Research and Scholarly InterestsMouse models to study murine and human infectious diseases. These colloborative studies include dengue virus, zika virus, adeno-associated virus, coxsackie virus, enterovirus 71, enterohepatic helicobacters, campylobacters, and anaplasma.
-
William Newsome
Harman Family Provostial Professor and Professor of Neurobiology and, by courtesy, of Psychology
Current Research and Scholarly InterestsNeural processes that mediate visual perception and visually-based decision making. Influence of reward history on decision making.
-
Quan Dong Nguyen, MD, MSc
Professor of Ophthalmology and, by courtesy, of Pediatrics and of Medicine (Immunology & Rheumatology)
Current Research and Scholarly InterestsWe have focused our research on the development of novel therapies and innovative assessment and diagnostic imaging technologies for retinal vascular and ocular inflammatory disorders, specifically diabetic retinopathy (DR), age-related macular degeneration (AMD) and uveitis. Building on our initial work describing the role of hypoxia and vascular endothelial growth factor (VEGF) in diabetic retinopathy (DR) and diabetic macular edema (DME), We have become interested in the biochemical mechanisms that would presumably lead to DME. During the past decade, our research has contributed to the body of evidences that defines the important role of anti-VEGF therapies in DME and AMD, as well as the role of the mTOR pathway and various interleukins in the pathogenesis of uveitis.
We have launched a productive and well-funded clinical research program while at the same time providing clinical care to patients with uveitis and retinal vascular diseases and fulfilling significant teaching and administrative assignments. We have established a number of key collaborators both within and outside the institutions. In addition, we have also established Center in Baltimore and now in Silicon Valley, which has excelled in conducting proof-of concept, early-phase multi-center clinical trials and studies, exploring the clinical disease manifestations and the efficacy of various pharmacologic agents in retinal, uveitic, and ocular inflammatory disorders. -
Anthony Norcia
Professor (Research) of Psychology
Current Research and Scholarly InterestsVision, development, functional imaging, systems analysis
-
Paul Nuyujukian
Assistant Professor of Bioengineering and of Neurosurgery and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsOur group explores neuroengineering and its application to both basic and clinical neuroscience. Our goal is to develop brain-machine interfaces as a platform technology for a variety of brain-related medical conditions including stroke and epilepsy.
-
Dáibhid Ó Maoiléidigh, PhD
Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsThe Ó Maoiléidigh group employs mathematical and computational approaches to better understand normal hearing and hearing impairment. Because complete restoration of auditory function by artificial devices or regenerative treatments will only be possible when experiments and computational modeling align, we work closely with experimental laboratories. Our goal is to understand contemporary experimental observations, to make experimentally testable predictions, and to motivate new experiments. We are pursuing several projects.
Hair-Bundle Mechanics
Auditory and balance organs rely on hair cells to convert mechanical vibrations into electrical signals for transmission to the brain. In response to the quietest sounds we can hear, the hair cell's mechanical sensor, the hair bundle, moves by less than one-billionth of a meter. To determine how this astounding sensitivity is possible, we construct computational models of hair-bundle mechanics. By comparing models with experimental observations, we are learning how a hair bundle's geometry, material properties, and ability to move spontaneously determine its function.
Cochlear Mechanics
The cochlea contains the auditory organ that houses the sensory hair cells in mammals. Vibrations in the cochlea arising from sound are amplified more than a thousandfold by the ear's active process. New experimental techniques have additionally revealed that the cochlea vibrates in a complex manner in response to sound. We use computational models to interpret these observations and to make hypotheses about how the cochlea works. -
Lauren O'Connell
Associate Professor of Biology
Current Research and Scholarly InterestsThe O'Connell lab studies how genetic and environmental factors contribute to biological diversity and adaptation. We are particularly interested in understanding (1) how behavior evolves through changes in brain function and (2) how animal physiology evolves through repurposing existing cellular components.