Institute for Computational and Mathematical Engineering (ICME)
Showing 61-80 of 172 Results
-
Alexander Ioannidis
Assistant Professor (Research) of Genetics and of Biomedical Data Science
Adjunct Professor, Institute for Computational and Mathematical Engineering (ICME)BioDr. Ioannidis earned his Ph.D. from Stanford University in Computational and Mathematical Engineering together with an M.S. in Management Science and Engineering (Optimization). He graduated summa cum laude from Harvard University in Chemistry and Physics and earned an M.Phil at the University of Cambridge from the Department of Applied Math and Theoretical Physics in Computational Biology. His research focuses on the design of algorithms and application of computational methods for problems in precision health, genomics, clinical data science, and AI in healthcare.
-
Doug James
LeRa Professor and Professor, by courtesy, of Music
Current Research and Scholarly InterestsComputer graphics & animation, physics-based sound synthesis, computational physics, haptics, reduced-order modeling
-
Antony Jameson
Professor (Research) of Aeronautics and Astronautics, Emeritus
BioProfessor Jameson's research focuses on the numerical solution of partial differential equations with applications to subsonic, transonic, and supersonic flow past complex configurations, as well as aerodynamic shape optimization.
-
Jikai Jin
Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2023
BioI am currently a Ph.D. student of the The Institute for Computational and Mathematical Engineering (ICME) at Stanford university. Prior to joining Stanford, I obtained my bachelor degree in computational mathematics at the School of Mathematical Sciences, Peking University, fortunately having Prof. Liwei Wang as my research advisor. My research is highly interdisciplinary across machine learning, statistics, operations research. While primarily focusing on theoretical aspects, the ultimate goal of my research is to develop state-of-the-art solutions for important real-world problems.
-
Ramesh Johari
Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering
BioJohari is broadly interested in the design, economic analysis, and operation of online platforms, as well as statistical and machine learning techniques used by these platforms (such as search, recommendation, matching, and pricing algorithms).
-
Riley Juenemann
Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2021
BioThird-year Computational and Mathematical Engineering (ICME) PhD Candidate @ Stanford University passionate about research at the intersection of mathematics, computing, and biology.
-
Peter K. Kitanidis
Professor of Civil and Environmental Engineering
BioKitanidis develops methods for the solution of interpolation and inverse problems utilizing observations and mathematical models of flow and transport. He studies dilution and mixing of soluble substances in heterogeneous geologic formations, issues of scale in mass transport in heterogeneous porous media, and techniques to speed up the decay of pollutants in situ. He also develops methods for hydrologic forecasting and the optimization of sampling and control strategies.
-
Ava Kouhana
Masters Student in Computational and Mathematical Engineering, admitted Autumn 2024
BioHi ! I am an ICME master's degree student at Stanford University, currently conduction research in Professor Gordon Wetzstein’s Computational Imaging Lab.
Prior to Stanford, I dedicated six months conducting research at Harvard under the supervision of Dr. Mengyu Wang, focusing primarily on Computer Vision tasks like Image Segmentation and Vision-Language Models. Before joining ICME , I have had the opportunity to work for six months supervised by Stanford Professor Craig Levin, researching the application of Diffusion Models for image super-resolution.
My research interests primarily revolve around computer vision, deep learning, and generative AI, with a growing interest for 3D modeling and video generation. -
Ellen Kuhl
Catherine Holman Johnson Director of Stanford Bio-X, Walter B Reinhold Professor in the School of Engineering, Professor of Mechanical Engineering and, by courtesy, of Bioengineering
Current Research and Scholarly Interestscomputaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation
-
Ching-Yao Lai
Assistant Professor of Geophysics
BioMy group attacks fundamental questions in fluid dynamics and geophysics by integrating mathematical and machine-learned models with observational data. We use our findings to address challenges facing the world, such as advancing our scientific knowledge of ice dynamics under climate change. The length scale of the systems we are interested in varies broadly from a few microns to thousands of kilometers, because the governing physical principles are often universal across a range of length and time scales. We use mathematical models, simulations, and machine learning to study the complex interactions between fluids and elasticity and their interfacial dynamics, such as multiphase flows, flows in deformable structures, and cracks. We extend our findings to tackle emerging topics in climate science and geophysics, such as understand the missing physics that governs the flow of ice sheets in a warming climate. We welcome collaborations across disciplinary lines, from geophysics, engineering, physics, applied math to computer science, since we believe combining expertise and methodologies across fields is crucial for new discoveries.
-
Sanjiva Lele
Edward C. Wells Professor of the School of Engineering and Professor of Mechanical Engineering
BioProfessor Lele's research combines numerical simulations with modeling to study fundamental unsteady flow phemonema, turbulence, flow instabilities, and flow-generated sound. Recent projects include shock-turbulent boundary layer interactions, supersonic jet noise, wind turbine aeroacoustics, wind farm modeling, aircraft contrails, multi-material mixing and multi-phase flows involving cavitation. He is also interested in developing high-fidelity computational methods for engineering applications.