School of Engineering


Showing 1-20 of 46 Results

  • Joseph Kahn

    Joseph Kahn

    Professor of Electrical Engineering

    BioJoseph M. Kahn is a Professor of Electrical Engineering at Stanford University. His research addresses communication and imaging through optical fibers, including modulation, detection, signal processing and spatial multiplexing. He received A.B. and Ph.D. degrees in Physics from U.C. Berkeley in 1981 and 1986. From 1987-1990, he was at AT&T Bell Laboratories, Crawford Hill Laboratory, in Holmdel, NJ. He was on the Electrical Engineering faculty at U.C. Berkeley from 1990-2003. In 2000, he co-founded StrataLight Communications, which was acquired by Opnext, Inc. in 2009. He received the National Science Foundation Presidential Young Investigator Award in 1991 and is a Fellow of the IEEE.

  • Thomas Kailath

    Thomas Kailath

    Hitachi America Professor in the School of Engineering, Emeritus

    BioThomas Kailath obtained a B.E.(Telecom) degree from the College of Engineering in Pune, India, in !956 and M.S. (1959) and Sc.D. (1961) degrees in Electrical Engineering from the Massachusetts Institute of Technology.

    After a year at the Jet Propulsion Laboratories, he joined Stanford University in 1963 as an Associate Professor of Electrical Engineering, was promoted to Professor in 1968, and named to the Hitachi America Chair in 1988. He assumed Emeritus status in June 2001. His research has spanned a large number of engineering and mathematical disciplines, and he has mentored over a hundred doctoral and postdoctoral students. Their joint efforts have led to over 300 journal papers, several of which have received outstanding paper prizes; they have also led to a dozen patents and to several books and monographs. He has also co-founded and served as a director of several private and public high-technology companies. and has been

    He is a fellow of the IEEE and a member of the US National Academy of Engineering, the US National Academy of Sciences, the American Academy of Arts and Sciences, the Indian National Academy of Engineering, the Academy of Sciences of the Developing World and the Royal Spanish Academy of Engineering. In 2006, he was inducted into the Silicon Valley Engineering Hall of Fame.

    Other major honors include several IEEE medals and prizes, including the 2007 Medal of Honor in 2007, Guggenheim and Churchill Fellowships, and honorary degrees from universities in Sweden, Scotland, Spain and France.

  • Theodore Kamins

    Theodore Kamins

    Adjunct Professor, Electrical Engineering
    Researcher, Hansen Experimental Physics Laboratory (HEPL)

    Current Research and Scholarly InterestsTed is guiding research on epitaxial Si and Ge deposition for optical interconnects and medical sensing, on photodiode arrays for retinal prosthesis, and on other applications of advanced semiconductor processing techniques.

  • Barbara A. Karanian, Ph.D./School of Engineering

    Barbara A. Karanian, Ph.D./School of Engineering

    Lecturer, Mechanical Engineering

    BioBarbara A. Karanian, Ph.D. Lecturer, previously visiting Professor----Barbara's research focuses on four areas: 1) grounding a blend of theories from social-cognitive psychology, engineering design and art to show how cognition affects design decisions; 2) changing the way people understand the emotion behind their work with the intent to do something new; 3) shifting norms of leaders involved in entrepreneurial minded action; 4) developing teaching methods with a storytelling focus in engineering education.

    Barbara teaches and studies how a person’s behavior at work is framed around a blend of applied theoretical perspectives from social psychology and cognitive psychology; engineering design thinking and art. Her storytelling methods provides a form for students to explore and discover the practices of inquiry from the class and apply them to how individuals behave within organizations, and the ways organizations face challenges. Active storytelling and self-reflective observation helps student and industry leaders to iterate and progress from the early idea phases of projects to reality. Founder of the Design Entrepreneuring Studio, she is the author of, "Working Connection: The Relational Art of Leadership;" "Entrepreneurial Leadership: A Balancing Act in Engineering and Science;" and "Designing for Social Participation in the Virtual Universe." In ME 378, Tell/Make/Engage - action stories for entrepreneuring class, 'Story' is defined two ways: 1) a story is a form or idea for creating successful engagement strategies and alignment; and 2) storytelling as rapid prototyping - proven methods for iterative development across the developmental stages of a research project, a dissertation, career path change, or a start-up company. With her students, she co-authored, "The Power of First Moments in Entrepreneurial Storytelling." Findings show that the characteristic of vulnerability amplifies engagement. In another class, ME 236 - Tales to Design Cars By- the opportunity to investigate a person’s relationship with cars through the application of research, design thinking, and with a generative storytelling focus-students find the inspiration for designing a new automotive experience.

    Barbara makes productive partnerships with industry and creates collaborative teams with members from the areas of engineering, design, psychology, business, communication, and medicine. Her recent work examines: ways to generate creative work environments; motivators for modes of transportation; leader problem-solving for group effectiveness by iterating on an intelligent wall; and perceived differences in on-line and off-line lives. She also bridges the intersection of Silicon Valley and Hollywood in an initiative for building a predictive model of success. Barbara received her B.A. in the double major of Experimental Psychology and Fine Arts from the College of the Holy Cross, her M.A. in Art Therapy from Lesley University, and her Ph.D. in Educational Studies in Organizational Behavior from Lesley University. She was a Teaching Fellow 1990-1991 at Harvard University's GSE; and in 2013 awarded best Teaching Strategies paper by ASEE's Entrepreneurship & Innovation division.

  • Riitta Katila

    Riitta Katila

    Professor of Management Science and Engineering

    Current Research and Scholarly InterestsThe question that drives Prof. Katila's research is how technology-based firms with significant resources can stay innovative. Her work lies at the intersection of the fields of technology, innovation, and strategy and focuses on strategies that enable organizations to discover, develop and commercialize technologies. She combines theory with longitudinal large-sample data (e.g., robotics, biomedical, multi-industry datasets), background fieldwork, and state-of-the-art quantitative methods. The ultimate objective is to understand what makes technology-based firms successful.

    To answer this question, Prof. Katila conducts two interrelated streams of research. She studies (1) strategies that help firms leverage their existing resources (leverage stream), and (2) strategies through which firms can acquire new resources (acquisition stream) to create innovation. Her early contributions were firm centric while recent contributions focus on innovation in the context of competitive interaction.

    Professor Katila's work has appeared in the Academy of Management Journal, Administrative Science Quarterly, Strategic Entrepreneurship Journal, Strategic Management Journal, Research Policy and other outlets. In her most recent work, supported by the National Science Foundation, Katila examines how firms create new products successfully. Focusing on the robotics and medical device industries, she investigates how different search approaches, such as the exploitation of existing knowledge and the exploration for new knowledge, influence the kinds of new products that technology-intensive firms introduce. Professor Katila has served on the editorial boards of several leading journals including Administrative Science Quarterly, Organization Science, Strategic Organization, and the Strategic Management Journal.

  • Sachin Katti

    Sachin Katti

    Associate Professor of Electrical Engineering and of Computer Science

    BioSachin Katti is currently an Assistant Professor of Electrical Engineering and Computer Science at Stanford University. He recently received his PhD in EECS from MIT in 2009. His research focuses on designing and building next generation high capacity wireless networks using techniques from information and coding theory. His dissertation research focused on redesigning wireless mesh networks with network coding as the central unifying design paradigm. The dissertation won the 2008 ACM Doctoral Dissertation Award - Honorable Mention, the George Sprowls Award for Best Doctoral Dissertation in EECS at MIT. His work on network coding was also awarded a MIT Deshpande Center Innovation Grant, and won the 2009 William Bennett Prize for Best Paper in IEEE/ACM Transactions on Networking. His research interests are in networks, wireless communications, applied coding theory and security.

  • Leonid Kazovsky

    Leonid Kazovsky

    Professor (Research) of Electrical Engineering, Emeritus

    BioProfessor Kazovsky and his research group are investigating green energy-efficient networks. The focus of their research is on access and in-building networks and on hybrid optical / wireless networks. Prof. Kazovsky's research group is also conducting research on next-generation Internet architectures and novel zero-energy photonic components.

  • David Kelley

    David Kelley

    Donald W. Whittier Professor in Mechanical Engineering

    BioDavid Kelley's work is dedicated to helping people gain confidence in their creative abilities. He employs a project based methodology called Design Thinking within both the Product Design Program and the Hasso Plattner Institute of Design.

    Design Thinking is based on building empathy for user needs, developing solutions with iterative prototyping, and inspiring ideas for the future through storytelling.

    The Product Design program emphasizes the blending of engineering innovation, human values, and manufacturing concerns into a single curriculum. Kelley teaches engineering design methodology, the techniques of quick prototyping to prove feasibility, and design through understanding of user needs.

  • Thomas Kenny

    Thomas Kenny

    Richard W. Weiland Professor and Senior Associate Dean for Student Affairs in the School of Engineering

    BioKenny's group is researching fundamental issues and applications of micromechanical structures. These devices are usually fabricated from silicon wafers using integrated circuit fabrication tools. Using these techniques, the group builds sensitive accelerometers, infrared detectors, and force-sensing cantilevers. This research has many applications, including integrated packaging, inertial navigation, fundamental force measurements, experiments on bio-molecules, device cooling, bio-analytical instruments, and small robots. Because this research field is multidisciplinary in nature, work in this group is characterized by strong collaborations with other departments, as well as with local industry.

  • Oussama Khatib

    Oussama Khatib

    Weichai Professor and Professor, by courtesy, of Mechanical Engineering and of Electrical Engineering

    BioKhatib's research is in autonomous robots, human-centered robotics, human-friendly robot design, dynamic simulations, and haptic interactions. His exploration in this research ranges from the autonomous ability of a robot to cooperate with a human to the haptic interaction of a user with an animated character, virtual prototype, or surgical instrument.

  • Chaitan Khosla

    Chaitan Khosla

    Director, ChEM-H, Wells H. Rauser and Harold M. Petiprin Professor in the School of Engineering and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

    Recently, we initiated a collaborative program involving multiple Stanford laboratories (http://med.stanford.edu/virx.html.html) that is aimed at developing a fundamentally new approach to treating viral infections. As part of this initiative, we are developing an antiviral chemotherapy that modulates pyrimidine metabolism in the host, and also a platform to engineer immuno-modulatory glycolipids for the treatment of influenza.

  • Butrus Khuri-Yakub

    Butrus Khuri-Yakub

    Professor (Research) of Electrical Engineering

    BioButrus (Pierre) T. Khuri-Yakub is a Professor of Electrical Engineering at Stanford University. He received the BS degree from the American University of Beirut, the MS degree from Dartmouth College, and the Ph.D. degree from Stanford University, all in electrical engineering. His current research interests include medical ultrasound imaging and therapy, ultrasound neuro-stimulation, chemical/biological sensors, gas flow and energy flow sensing, micromachined ultrasonic transducers, and ultrasonic fluid ejectors. He has authored over 550 publications and has been principal inventor or co-inventor of 94 US and international issued patents. He was awarded the Medal of the City of Bordeaux in 1983 for his contributions to Nondestructive Evaluation, the Distinguished Advisor Award of the School of Engineering at Stanford University in 1987, the Distinguished Lecturer Award of the IEEE UFFC society in 1999, a Stanford University Outstanding Inventor Award in 2004, Distinguished Alumnus Award of the School of Engineering of the American University of Beirut in 2005, Stanford Biodesign Certificate of Appreciation for commitment to educate, mentor and inspire Biodesgin Fellows, 2011, and 2011 recipient of IEEE Rayleigh award.