School of Engineering
Showing 201-282 of 282 Results
-
Elizabeth Sattely
Associate Professor of Chemical Engineering
BioPlants have an extraordinary capacity to harvest atmospheric CO2 and sunlight for the production of energy-rich biopolymers, clinically used drugs, and other biologically active small molecules. The metabolic pathways that produce these compounds are key to developing sustainable biofuel feedstocks, protecting crops from pathogens, and discovering new natural-product based therapeutics for human disease. These applications motivate us to find new ways to elucidate and engineer plant metabolism. We use a multidisciplinary approach combining chemistry, enzymology, genetics, and metabolomics to tackle problems that include new methods for delignification of lignocellulosic biomass and the engineering of plant antibiotic biosynthesis.
-
Johanna Schroeder
Postdoctoral Scholar, Chemical Engineering
BioPostdoc Fellow of Leopoldina (German National Academy of Sciences)
-
Eric S.G. Shaqfeh
Lester Levi Carter Professor and Professor of Mechanical Engineering
Current Research and Scholarly InterestsI have over 25 years experience in theoretical and computational research related to complex fluids following my PhD in 1986. This includes work in suspension mechanics of rigid partlcles (rods), solution mechanics of polymers and most recently suspensions of vesicles, capsules and mixtures of these with rigid particles. My research group is internationally known for pioneering work in all these areas.
-
Hyongsok Tom Soh
Professor of Radiology (Early Detection), of Electrical Engineering, of Bioengineering and, by courtesy, of Chemical Engineering
BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.
-
Andrew Spakowitz
Professor of Chemical Engineering, of Materials Science and Engineering and, by courtesy, of Applied Physics
Current Research and Scholarly InterestsTheory and computation of biological processes and complex materials
-
Alfred M. Spormann
Professor of Civil and Environmental Engineering and of Chemical Engineering
Current Research and Scholarly InterestsMetabolism of anaerobic microbes in diseases, bioenergy, and bioremediation
-
James Swartz
James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering
On Leave from 10/01/2022 To 06/30/2023Current Research and Scholarly InterestsProgram Overview
The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances. -
William Abraham Tarpeh
Assistant Professor of Chemical Engineering, Center Fellow at the Precourt Institute for Energy, by courtesy, at the Woods Institute for the Environment and Assistant Professor, by courtesy, of Civil and Environmental Engineering
BioReimagining liquid waste streams as resources can lead to recovery of valuable products and more efficient, less costly approaches to reducing harmful discharges to the environment. Pollutants in effluent streams can be captured and used as valuable inputs to other processes. For example, municipal wastewater contains resources like energy, water, nutrients, and metals. The Tarpeh Lab develops and evaluates novel approaches to resource recovery from “waste” waters at several synergistic scales: molecular mechanisms of chemical transport and transformation; novel unit processes that increase resource efficiency; and systems-level assessments that identify optimization opportunities. We employ understanding of electrochemistry, separations, thermodynamics, kinetics, and reactor design to preferentially recover resources from waste. We leverage these molecular-scale insights to increase the sustainability of engineered processes in terms of energy, environmental impact, and cost.
-
Jeffrey B. Tok
Laboratory Director, Chemical Engineering
BioEducation:
The University of Washington, Seattle, WA, B.Sc. (Chemistry & Biochemistry), 1989-1992
The University of Chicago, Chicago, IL, Ph.D. (Bioorganic Chemistry), 1992-1996
Harvard University, Boston, MA, Postdoctoral Research Fellow (Bioorganic Chemistry), 1997-1999
Work Experience:
Assistant Professor, City University of New York, York College and Graduate Center, 1999-2003
Associate Professor, City University of New York, York College and Graduate Center, 2003-2004
Principal Scientist (Indefinite), Lawrence Livermore National Laboratory, 2004-2008
Chief BioScientist, Micropoint Bioscience Inc, 2008-2010
Senior Research Engineer/Scientist, Stanford University, 2010-present
Director, Uytengsu Teaching Center, Shriram Center, 2015-present
Manager, Soft & Hybrid Materials Shared Facility, Stanford Nano Shared Facility, 2010-present
Manager & Instructor, Dept of Chemical Engineering Teaching Lab, 2010-present
Research Activities (via 'Google Scholar'):
https://scholar.google.com/citations?user=hXSGJC0AAAAJ&hl=en&oi=sra -
Amy Wang
Ph.D. Student in Chemical Engineering, admitted Autumn 2018
BioAmy is a PhD Candidate in Chemical Engineering. She works with Prof. William Weis and Prof. Alexander Dunn to study mechanosensitive proteins, using techniques in single molecule force spectroscopy and physics-based simulation.
-
Robert Waymouth
Robert Eckles Swain Professor of Chemistry and Professor, by courtesy, of Chemical Engineering
BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including bioactive polymers, synthetic fuels, and sustainable plastics. In one such breakthrough, Professor Waymouth and Professor Wender developed a new class of gene delivery agents.
Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.
Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. In collaboration with Dr. James Hedrick of IBM, we have developed a platform of highly active organic catalysts and continuous flow reactors that provide access to polymer architectures that are difficult to access by conventional approaches.
The Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver genes, drugs and probes into cells and live animals. These advances led to the joint discovery with the Wender group of a general, safe, and remarkably effective concept for RNA delivery based on a new class of synthetic cationic materials, Charge-Altering Releasable Transporters (CARTs). This technology has been shown to be effective for mRNA based cancer vaccines. -
Kindle Williams
Postdoctoral Scholar, Chemical Engineering
Current Research and Scholarly InterestsKindle is a postdoctoral researcher in Prof. William Tarpeh's group. She studies nutrient recovery from wastewaters, with a particular focus on electrochemical techniques for the conversion and recovery of inorganic nitrogen species. She is interested in translating technologies for nutrient recovery to practice.
-
Jian Xiong
Postdoctoral Scholar, Chemical Engineering
BioI thrive to understand the roles of lysosomes in physiological and pathological conditions. Lysosomes are both degradation compartment and metabolic controlling hub, and dysregulation of lysosomal functions are frequently implicated in a vast number of diseases including neurodegenerative diseases, however, the systematic knowledge of the molecular mechanism by which lysosomal contributes to these diseases is lacking. Ion channels are the primary mediators of neuronal activity, defects in neuronal ion channel activity are linked with many kinds of neurodegenerative diseases. Interestingly, besides typical ion channels that are involved in the neuronal activity, defects in lysosomal ion channels, such as TRPML1, CLN7 and CLC-7 are also implicated in neuropathy. My previous work as Ph.D student in University of Texas MD Anderson Cancer Center focused on regulation of lysosomal function by ion channels and metabolites. I discovered a mechanism of lysosomal Na+ channel regulate mTORC1 activation by regulating lysosomal amino acid accumulation. I also discovered role of glutamine in controlling lysosomal degradation capacity. In the meantime, I developed novel methods to isolate organelles. My ultimate research goal is to understand the key developmental pathways and how alterations in gene sequences and expression contribute to human disease, therefore, I am pursuing independent academic researcher as my career goal. Starting Feb 2022, I work with Dr. Monther Abu-Remaileh at Stanford University on role of lysosomes in neurodegenerative diseases. I use genetics, chemical biology and omics approaches to study lysosome function under various physiological and pathological conditions, especially age-associated neurodegenerative disorders, and monogenic neurodegenerative lysosome storage diseases. In Stanford, I aim to integrate ionic regulation, metabolomic regulation and functional proteomic regulation to systematically understand the biology of lysosome in physiological conditions and pathological conditions.
-
Chengyi Xu
Postdoctoral Scholar, Chemical Engineering
BioSkin-inspired sensing and actuating technologies: from cephalopod camouflage to human tactile perception
-
Do Y. Yoon
Adjunct Professor, Chemical Engineering
BioDo Y. Yoon is Adjunct Professor of Chemical Engineering at Stanford University since 2012. He obtained his B.S. in Chemical Engineering from Seoul National University, Korea (1969), and earned his Ph.D. in Polymer Science and Engineering from University of Massachusetts Amherst, working with Richard S. Stein (1973). He did his postdoctoral study with Paul J. Flory in Chemistry Department of Stanford University (1973-1975). He then worked in IBM Research Laboratory in San Jose, California as Research Staff Member and Manager of Polymer Physics Group (1975-1999). From 1999 to 2012, he was Professor of Chemistry at Seoul National University, Korea, and served as the Korean spokesperson of the Germany-Korea International Research Training Group on “Self-organized Materials for Optoelectronics” (2006-2012) and also as member of science advisory board of LG Chem (2000-2006). He published about 260 research papers (h-index: 73), was elected a fellow of American Physical Society (1985), and received Humboldt Research Award by the Alexander von Humboldt Foundation of Germany (1999) and Academic Achievements Award from the Alumni Association of Seoul National University (2017). His research areas included molecular conformations & dynamics, semicrystalline molecular morphology, liquid crystalline state, surface and thin film characteristics of polymers, and structure-property relationships of polymers for information technology, organic electronics, and clean energy. He is a co-editor of "Selected Works of Paul J. Flory" and a co-author of "Paul John Flory: A Life of Science and Friends."
-
Maha Yusuf
Ph.D. Student in Chemical Engineering, admitted Autumn 2015
Current Research and Scholarly InterestsLong charging times of lithium-ion batteries (LIBs) is a major bottleneck in the widespread deployment of electric vehicles (EVs). There is a global push to enable extreme fast charging (XFC) of EV batteries to reduce their charging times to 10-15 minutes. But existing LIBs cannot achieve this goal without significantly reducing battery performance. This is mainly attributed to a phenomenon, known as “Li plating,” as the battery is charged fast. In this thesis, I use neutron and X-ray-based imaging to visualize the battery electrode to investigate Li plating at elevated charging rates.