School of Engineering
Showing 101-120 of 157 Results
-
John M. Pauly
Reid Weaver Dennis Professor
BioInterests include medical imaging generally, and magnetic resonance imaging (MRI) in particular. Current efforts are focused on medical applications of MRI where real-time interactive imaging is important. Two examples are cardiac imaging, and the interactive guidance of interventional procedures. Specific interests include rapid methods for the excitation and acquisition of the MR signal, and the reconstruction of images from the data acquired using these approaches.
-
Kim Butts Pauly
Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsWe are investigating and developing, and applying focused ultrasound in neuromodulation, blood brain barrier opening, and ablation for both neuro and body applications.
-
Marco Pavone
Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering and of Computer Science
BioDr. Marco Pavone is an Associate Professor of Aeronautics and Astronautics at Stanford University, where he directs the Autonomous Systems Laboratory and the Center for Automotive Research at Stanford. He is also a Distinguished Research Scientist at NVIDIA where he leads autonomous vehicle research. Before joining Stanford, he was a Research Technologist within the Robotics Section at the NASA Jet Propulsion Laboratory. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. His main research interests are in the development of methodologies for the analysis, design, and control of autonomous systems, with an emphasis on self-driving cars, autonomous aerospace vehicles, and future mobility systems. He is a recipient of a number of awards, including a Presidential Early Career Award for Scientists and Engineers from President Barack Obama, an Office of Naval Research Young Investigator Award, a National Science Foundation Early Career (CAREER) Award, a NASA Early Career Faculty Award, and an Early-Career Spotlight Award from the Robotics Science and Systems Foundation. He was identified by the American Society for Engineering Education (ASEE) as one of America's 20 most highly promising investigators under the age of 40. His work has been recognized with best paper nominations or awards at a number of venues, including the European Conference on Computer Vision, the IEEE International Conference on Robotics and Automation, the European Control Conference, the IEEE International Conference on Intelligent Transportation Systems, the Field and Service Robotics Conference, the Robotics: Science and Systems Conference, and the INFORMS Annual Meeting.
-
Piero Pianetta
Professor (Research) of Photon Science and of Electrical Engineering
BioPianetta's research is directed towards understanding how the atomic and electronic structure of semiconductor interfaces impacts device technology pertaining to advanced semiconductors and photocathodes. His research includes the development of new analytical tools for these studies based on the use of synchrotron radiation. These include the development of ultrasensitive methods to analyze trace impurities on the surface of silicon wafers at levels as low as 1e-6 monolayer (~1e8 atoms/cm2) and the use of various photoelectron spectroscopies (X-ray photoemission, NEXAFS, X-ray standing waves and photoelectron diffraction) to determine the bonding and atomic structure at the interface between silicon and different passivating layers. Recent projects include the development of high resolution (~30nm) x-ray spectromicroscopy with applications to energy materials such as Li batteries.
-
Mert Pilanci
Assistant Professor of Electrical Engineering
Current Research and Scholarly InterestsDr. Pilanci's research interests include neural networks, machine learning, mathematical optimization, information theory and signal processing.
-
Jim Plummer
John M. Fluke Professor of Electrical Engineering. Emeritus
Current Research and Scholarly InterestsGenerally studies the governing physics and fabrication technology of silicon integrated circuits, including the scaling limits of silicon technology, and the application of silicon technology outside traditional integrated circuits, including power switching devices such as IGBTs. Process simulation tools like SUPREM for simulating fabrication. Recent work has focused on wide bandgap semiconductor materials, particularly SiC and GaN, for power control devices.
-
Kilian M Pohl
Professor (Research) of Psychiatry and Behavioral Sciences (Major Labs and Incubator) and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsThe foundation of the laboratory of Associate Professor Kilian M. Pohl, PhD, is computational science aimed at identifying biomedical phenotypes improving the mechanistic understanding, diagnosis, and treatment of neuropsychiatric disorders. The biomedical phenotypes are discovered by unbiased, machine learning-based searches across biological, neuroimaging, and neuropsychological data. This data-driven discovery currently supports the adolescent brain research of the NIH-funded National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) and the Adolescent Brain Cognitive Development (ABCD), the largest long-term study of brain development and child health in the US. The laboratory also investigates brain patterns specific to alcohol use disorder and the human immunodeficiency virus (HIV) across the adult age range, and have advanced the understanding of a variety of brain diseases including schizophrenia, Alzheimer’s disease, glioma, and aging.
-
Ada Poon
Associate Professor of Electrical Engineering
Current Research and Scholarly InterestsOur research focuses on providing theoretical foundations and engineering platforms for realizing electronics that seamlessly integrate with the body. Such systems will allow precise recording or modulation of physiological activity, for advancing basic scientific discovery and for restoring or augmenting biological functions for clinical applications.
-
Eric Pop
Pease-Ye Professor, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics
Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.
-
Balaji Prabhakar
VMware Founders Professor of Computer Science, Professor of Electrical Engineering and, by courtesy, of Operations, Information and Technology at the Graduate School of Business
BioPrabhakar's research focuses on the design, analysis, and implementation of data networks: both wireline and wireless. He has been interested in designing network algorithms, problems in ad hoc wireless networks, and designing incentive mechanisms. He has a long-standing interest in stochastic network theory, information theory, algorithms, and probability theory.
-
Priyanka Raina
Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science
Current Research and Scholarly InterestsFor Priyanka's research please visit her group research page at https://stanfordaccelerate.github.io
-
Ram Rajagopal
Associate Professor of Civil and Environmental Engineering, of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy
BioRam Rajagopal is an Associate Professor of Civil and Environmental Engineering at Stanford University, where he directs the Stanford Sustainable Systems Lab (S3L), focused on large-scale monitoring, data analytics and stochastic control for infrastructure networks, in particular, power networks. His current research interests in power systems are in the integration of renewables, smart distribution systems, and demand-side data analytics.
He holds a Ph.D. in Electrical Engineering and Computer Sciences and an M.A. in Statistics, both from the University of California Berkeley, Masters in Electrical and Computer Engineering from University of Texas, Austin and Bachelors in Electrical Engineering from the Federal University of Rio de Janeiro. He is a recipient of the NSF CAREER Award, Powell Foundation Fellowship, Berkeley Regents Fellowship and the Makhoul Conjecture Challenge award. He holds more than 30 patents and several best paper awards from his work and has advised or founded various companies in the fields of sensor networks, power systems, and data analytics. -
Juan Rivas-Davila
Associate Professor of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsModern applications demand power capabilities beyond what is presently achievable. High performance systems need high power density and bandwidth that are difficult to achieve.
Power density can be improved with better semiconductors and passive componets, and by reducing the energy storage requirements of the system. By dramatically increasing switching frequency it is possible to reduce size of power converters. I'm interested in high performance/frequency circuits switching >10 MHz. -
Mendel Rosenblum
Cheriton Family Professor and Professor of Electrical Engineering
On Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsNext generation data centers
-
Krishna Saraswat
Rickey/Nielsen Professor in the School of Engineering, Emeritus
Current Research and Scholarly InterestsNew and innovative materials, structures, and process technology of semiconductor devices, interconnects for nanoelectronics and solar cells.
-
Dustin Schroeder
Associate Professor of Geophysics, of Electrical Engineering and Senior Fellow at the Woods Institute for the Environment
BioMy research focuses on advancing the scientific and technical foundations of geophysical ice penetrating radar and its use in observing and understanding the interaction of ice and water in the solar system. I am primarily interested in the subglacial and englacial conditions of rapidly changing ice sheets and their contribution to global sea level rise. However, a growing secondary focus of my work is the exploration of icy moons. I am also interested in the development and application of science-optimized geophysical radar systems. I consider myself a radio glaciologist and strive to approach problems from both an earth system science and a radar system engineering perspective. I am actively engaged with the flow of information through each step of the observational science process; from instrument and experiment design, through data processing and analysis, to modeling and inference. This allows me to draw from a multidisciplinary set of tools to test system-scale and process-level hypotheses. For me, this deliberate integration of science and engineering is the most powerful and satisfying way to approach questions in Earth and planetary science.