School of Humanities and Sciences

Showing 1-40 of 40 Results

  • Chiara Sabatti

    Chiara Sabatti

    Professor of Biomedical Data Science and of Statistics

    Current Research and Scholarly InterestsStatistical models and reasoning are key to our understanding of the genetic basis of human traits. Modern high-throughput technology presents us with new opportunities and challenges. We develop statistical approaches for high dimensional data in the attempt of improving our understanding of the molecular basis of health related traits.

  • Robert Sapolsky

    Robert Sapolsky

    John A. and Cynthia Fry Gunn Professor and Professor of Neurology and of Neurosurgery

    Current Research and Scholarly InterestsNeuron death, stress, gene therapy

  • Monika Schleier-Smith

    Monika Schleier-Smith

    Associate Professor of Physics

    Current Research and Scholarly InterestsIn between the few­-particle realm where we have mastered quantum mechanics and the macroscopic domain describable by classical physics, there lies a broad swath of territory where quantum effects are relevant but still largely out of our control and partly beyond our comprehension. This territory includes metrological instruments whose precision is limited by the quantum projection noise of millions of atoms; and materials whose bulk properties emerge from many-­body interactions intractable to simulation on classical computers. Professor Schleier­-Smith’s research aims to advance our control and understanding of many­-particle quantum systems by engineering new quantum states and Hamiltonians with ensembles of laser-cooled atoms.

  • Mark J. Schnitzer

    Mark J. Schnitzer

    Professor of Biology and of Applied Physics

    Current Research and Scholarly InterestsThe goal of our research is to advance experimental paradigms for understanding normal cognitive and disease processes at the level of neural circuits, with emphasis on learning and memory processes. To advance these paradigms, we invent optical brain imaging techniques, several of which have been widely adopted. Our neuroscience studies combine these imaging innovations with behavioral, electrophysiological, optogenetic and computational methods, enabling a holistic approach to brain science.

  • Molly Schumer

    Molly Schumer

    Assistant Professor of Biology

    BioMolly Schumer is an Assistant Professor in Biology. She is interested in the genetic and evolutionary consequences of hybridization. After receiving her PhD at Princeton, she did her postdoctoral work at Columbia and was a Junior Fellow in the Harvard Society of Fellows and Hanna H. Gray Fellow at Harvard Medical School. Current research in the lab focuses on understanding genetic interactions that occur in hybrids and how these impact genome evolution.

  • Jennifer Schwartz Poehlmann

    Jennifer Schwartz Poehlmann

    Senior Lecturer of Chemistry

    BioReaching out to Stanford’s diverse body of students and beyond to share the excitement of scientific discovery has been a growing passion for Dr. Jennifer Schwartz Poehlmann. In addition to coordinating and co-teaching Stanford’s freshmen chemistry sequence, she takes a leadership role in developing training programs for teaching assistants and enhancing classroom and lab experiences for undergraduates, while also providing STEM learning opportunities for incoming freshmen and local high school students.

    Jennifer Schwartz Poehlmann studied chemistry at Washington University in Saint Louis Missouri (A.B. 2002) before coming to Stanford University as a graduate student (Ph.D. 2008). Her thesis work under Prof. Edward Solomon addressed structural contributions to reactivity in active sites of non-heme di-iron enzymes, including ferritins. She joined the Stanford Center (now Vice Provost) for Teaching and Learning as a Teaching Fellow in 2008. In 2009, she became Lecturer and Introductory Course Coordinator for the Department of Chemistry, and in 2011 was promoted to Senior Lecturer. She has received multiple awards for her teaching and training work, including the Walter J. Gores Award for Excellence in Teaching, Dean’s Award for Achievements in Teaching, Hoagland Award Fund for Innovations in Undergraduate Teaching, and Society of Latino Engineers and School of Engineering’s Professor of the Year Award.

    Dr. Schwartz coordinates and co-teaches the introductory course sequence of Chem31A, 31B, and 33 for about 450 students each year. She has also created a set of companion courses (Chem31A-C, 31B-C, and 33-C) designed to provide motivated students an opportunity to build stronger study habits and problem solving tools that help them persevere in the sciences regardless of prior science background. In parallel, she has been involved in the creation and teaching of the Leland Scholars Program, which facilitates the transition to college for incoming freshman intending to study in STEM or pre-health fields.

    Instructor Training
    Dr. Schwartz has always believed that well-prepared and enthusiastic teachers inspire and motivate learning, yet excellent teaching requires training, feedback, reflection and support. She has worked both within the department and more broadly to help ensure that teaching assistants throughout the university receive the training, practice and mentorship they need to grow and excel as educators. She previously directed the Department of Chemistry’s TA Training program and, with the Vice Provost for Teaching and Learning, co-founded and directs the Mentors in Teaching Program, MinT, which provides training and resources to teaching mentors from more than 15 departments on campus. Through MinT, advanced graduate students learn effective ways to mentor TAs, through mid-quarter feedback, classroom observation, establishment of teaching goals, and workshops that enable new TAs to better engage with students in the classroom.

    Enhanced Learning Experiences
    Dr. Schwartz has been heavily involved in the development of hands-on, guided-inquiry lab activities that are now fully integrated into lab/lecture courses throughout the introductory general and organic chemistry sequence. Through the “Inspiring Future Scientists in Chemistry” Outreach Program, she is also helping to bring the excitement of exploring real-world chemistry into local high schools. She works with local high school teachers to design lab experiences that reinforce and compliment the chemistry concepts in the California State curriculum. Stanford Chemistry students take these activities to local high schools, providing hundreds of students the opportunity to work with enthusiastic young scientists while getting hands-on experience in chemistry. The program aims to demonstrate how chemistry relates to the ‘real world’ and to promote an appreciation for both science and higher education.

  • Carla Shatz

    Carla Shatz

    Sapp Family Provostial Professor, The Catherine Holman Johnson Director of Stanford Bio-X and Professor of Biology and of Neurobiology

    Current Research and Scholarly InterestsThe goal of research in the Shatz Laboratory is to discover how brain circuits are tuned up by experience during critical periods of development both before and after birth by elucidating cellular and molecular mechanisms that transform early fetal and neonatal brain circuits into mature connections. To discover mechanistic underpinnings of circuit tuning, the lab has conducted functional screens for genes regulated by neural activity and studied their function for vision, learning and memory.

  • Kang Shen

    Kang Shen

    Professor of Biology and of Pathology

    Current Research and Scholarly InterestsThe connectivity of a neuron (its unique constellation of synaptic inputs and outputs) is essential for its function. Neuronal connections are made with exquisite accuracy between specific types of neurons. How each neuron finds its synaptic partners has been a central question in developmental neurobiology. We utilize the relatively simple nervous system of nematode C. elegans, to search for molecules that can specify synaptic connections and understand the molecular mechanisms of synaptic as

  • Zhi-Xun Shen

    Zhi-Xun Shen

    Paul Pigott Professor in Physical Sciences, Professor of Photon Science, of Physics and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsDr. Shen's main research interest lies in the area of condensed matter and materials physics, as well as the applications of materials and devices. He develops photon based innovative instrumentation and advanced experimental techniques, ranging from angle-resolved photoemission to microwave imaging, soft x-ray scattering and time domain spectroscopy and scattering. He has created a body of literature that advanced our understanding of quantum materials, including superconductors, semiconductors, novel magnets, topological insulators, novel carbon and electron emitters. He is best known for his discoveries of the momentum structure of anisotropic d-wave pairing gap and anomalous normal state pseudogap in high temperature superconductors. He has further leveraged the advanced characterization tool to make better materials through thin film and interface engineering.

  • Stephen Shenker

    Stephen Shenker

    Richard Herschel Weiland Professor in the School of Humanities and Sciences

    Current Research and Scholarly InterestsProfessor Shenker’s research focuses on quantum gravity, in particular string theory and M theory, with an emphasis on nonperturbative aspects.

  • Eva Silverstein

    Eva Silverstein

    Professor of Physics

    BioWhat are the basic degrees of freedom and interactions underlying gravitational and particle physics? What is the mechanism behind the initial seeds of structure in the universe, and how can we test it using cosmological observations? Is there a holographic framework for cosmology that applies throughout the history of the universe, accounting for the effects of horizons and singularities? What new phenomena arise in quantum field theory in generic conditions such as finite density, temperature, or in time dependent backgrounds?

    Professor Silverstein attacks basic problems in several areas of theoretical physics. She develops concrete and testable mechanisms for cosmic inflation, accounting for its sensitivity to very high energy physics. This has led to a fruitful interface with cosmic microwave background research, contributing to a more systematic analysis of its observable phenomenology.
    Professor Silverstein also develops mechanisms for breaking supersymmetry and for stabilizing the extra dimensions of string theory to model the immense hierarchies between the cosmological horizon, electroweak, and Planck scales in nature. In addition, Professor Silverstein uses the ultraviolet completion of gravity afforded by string theory to address questions of quantum gravity, such as singularity resolution and the physics of black hole and cosmological horizons. Professor Silverstein also uses modern techniques in quantum field theory to model strongly coupled phenomena motivated by measurements in condensed matter physics.

    Areas of focus:
    - UV complete mechanisms and systematics of cosmic inflation, including string-theoretic versions of large-field inflation (with gravity wave CMB signatures) and novel mechanisms involving inflaton interactions (with non-Gaussian signatures in the CMB)
    -Systematic theory and analysis of primordial Non-Gaussianity, taking into account strongly non-linear effects in quantum field theory encoded in multi-point correlation functions 
    -Long-range interactions in string theory and implications for black hole physics
    - Concrete holographic models of de Sitter expansion in string theory, aimed at upgrading the AdS/CFT correspondence to cosmology
    - Mechanisms for non-Fermi liquid transport and $2k_F$ singularities from strongly coupled finite density quantum field theory
    - Mechanisms by which the extra degrees of freedom in string theory induce transitions and duality symmetries between spaces of different topology and dimensionality

  • Michael Simon

    Michael Simon

    Professor of Biology

    Current Research and Scholarly InterestsPlanar cell polarity, cell shape and mobility, and control of cell fate

  • Robert Simoni

    Robert Simoni

    Current Research and Scholarly InterestsCholesterol in biological membranes; genetic mechanisms & cholesterol production

  • Jan Skotheim

    Jan Skotheim

    Professor of Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsMy overarching goal is to understand how cell growth triggers cell division. Linking growth to division is important because it allows cells to maintain specific size range to best perform their physiological functions. For example, red blood cells must be small enough to flow through small capillaries, whereas macrophages must be large enough to engulf pathogens. In addition to being important for normal cell and tissue physiology, the link between growth and division is misregulated in cancer.

  • Edward I. Solomon

    Edward I. Solomon

    Monroe E. Spaght Professor in the School of Humanities and Sciences and Professor of Photon Science

    Current Research and Scholarly InterestsProf. Solomon's work spans physical-inorganic, bioinorganic, and theoretical-inorganic chemistry, focusing on spectroscopic elucidation of the electronic structure of transition metal complexes and its contribution to reactivity. He has advanced our understanding of metal sites involved in electron transfer, copper sites involved in O2 binding, activation and reduction to water, structure/function correlations over non-heme iron enzymes, and correlation of biological to heterogeneous catalysis.

  • George Somero

    George Somero

    David and Lucile Packard Professor in Marine Science, Emeritus

    Current Research and Scholarly InterestsWe examine two aspects of organism-environment interactions: How does stress from physical (e.g., temperature) and chemical (oxygen levels, pH) factors perturb organisms and how do organisms respond, adaptively, to cope with this stress? We examine evolutionary adaptation and phenotypic acclimatization using a wide variety of marine animals, including Antarctic fishes and invertebrates from intertidal habitats on the coastlines of temperate and tropical seas.

  • Erik Sperling

    Erik Sperling

    Assistant Professor of Geological Sciences and, by courtesy, of Biology and Center Fellow, by courtesy, at the Woods Institute for the Environment

    Current Research and Scholarly InterestsThe research interests in the Sperling Lab are Earth history and the evolution of life, and the interactions between the biosphere and the geosphere. As such this research can generally be considered paleontology, insofar as paleontology encompasses all aspects of the history of life.

    Consequently, we define our research agenda by the questions we are interested in, rather than the tools used. This research incorporates multiple lines of evidence, and multiple tools, to investigate questions in the history of life. These lines of evidence include fossil data, molecular phylogenetics, sedimentary geochemistry, and developmental and ecological data from modern organisms. Ultimately, the goal is to link environmental change with organismal and ecological response through the lens of physiology.

    Our field research takes place all over the world--current areas include:

    -NW Canada (Yukon and Northwest Territories): Research has been conducted on the early Neoproterozoic Fifteenmile Group, Cryogenian and Ediacaran Windermere Supergroup, and on the Ordovician-Devonian Road River Group in the southern Richardson Mountains
    -Southern Canadian Cordillera: Work here has focused on the early Cambrian Mural Formation and its soft-bodied fauna.
    -England and Wales: Cambrian-Silurian successions in the Welsh Basin
    -Namibia: Ediacaran Nama Group
    -Upwelling zones: We study the oxygen minimum zone offshore California as an analogue for ancient low-oxygen oceans.

  • Alfred M. Spormann

    Alfred M. Spormann

    Professor of Civil and Environmental Engineering, of Chemical Engineering and, by courtesy, of Biology
    On Partial Leave from 04/01/2021 To 06/30/2021

    Current Research and Scholarly InterestsMetabolism of anaerobic microbes in diseases, bioenergy, and bioremediation

  • Daniel Stack

    Daniel Stack

    Associate Professor of Chemistry

    BioResearch in the Stack group focuses on the mechanism of dioxygen activation and the subsequent oxidative reactivity with primarily copper complexes ligated by imidazoles or histamines. Specifically, the group is interested in substrate hydroxylations and full dioxygen reduction. The remarkable specificity and energy efficiency of metalloenzymes provide the inspiration for the work. Trapping and characterizing immediate species, primarily at low temperatures, provide key mechanistic insights especially through substrate reactivity along with spectroscopic and metrical correlation to DFT calculations. Our objective is to move these efficient enzymatic mechanisms into small synthetic complexes, not only to reproduce biological reactivity, but more importantly to move the oxidative mechanism beyond that possible in the protein matrix.

    Daniel Stack was born, raised and attended college in Portland Oregon. He received his B.A. from Reed College in 1982 (Phi Beta Kappa), working with Professor Tom Dunne on weak nickel-pyrazine complexes. In Boston, he pursued his doctoral study in synthetic inorganic chemistry at Harvard University (Ph.D., 1988) with Professor R. H. Holm, investigating site-differentiated synthetic analogues of biological Fe4S4 cubanes. As an NSF Postdoctoral Fellow with Professor K. N. Raymond at the University of California at Berkeley, he worked on synthesizing new, higher iron affinity ligands similar to enterobactin, a bacterial iron sequestering agent. He started his independent career in 1991 at Stanford University primarily working on oxidation catalysis and dioxygen activation, and was promoted to an Associate Professor in 1998. His contributions to undergraduate education have been recognized at the University level on several occasions, including the Dinkelspiel Award for Outstanding Contribution to Undergraduate Education in 2003.

    Areas of current focus include:

    Copper Dioxygen Chemistry
    Our current interests focus on stabilizing species formed in the reaction of dioxygen with Cu(I) complexes formed with biologically relevant imidazole or histamine ligation. Many multi-copper enzymes ligated in this manner are capable of impressive hydroxylation reactions, including oxidative depolymerization of cellulose, methane oxidation, and energy-efficient reduction of dioxygen to water. Oxygenation of such complexes at extreme solution temperatures (-125°C) yield transient Cu(III) containing complexes. As Cu(III) is currently uncharacterized in any biological enzyme, developing connections between the synthetic and biological realms is a major focus.

    Surface Immobilization of Catalysts in Mesoporous Materials
    In redox active biological metal sites, the ligation environment is coupled tightly to the functional chemistry. Yet, the metal sites are also site-isolated, creating species that may only have a transient existence in a homogeneous solution. Site isolation of synthetic complexes can be achieved synthetically by supporting the metal complex on a solid matrix. Movement of these complexes into silica based materials or onto electroactive carbon electrodes represent a new direction for the group in the development of bio-inspired metal-based catalysts.

  • Tim Stearns

    Tim Stearns

    Frank Lee and Carol Hall Professor, Senior Associate Vice Provost of Research and Professor of Genetics

    Current Research and Scholarly InterestsWe use the tools of genetics, microscopy, and biochemistry to understand fundamental questions of cell biology: How are cells organized by the cytoskeleton? How do the centrosome and cilium control cell control cell signaling? How is cell division coordinated with duplication of the centrosome, and what goes wrong in cancer cells defective in this coordination?

  • Leonard Susskind

    Leonard Susskind

    Felix Bloch Professor in Physics
    On Leave from 04/01/2021 To 06/30/2021

    BioLeonard Susskind is the Felix Bloch professor of Theoretical physics at Stanford University. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the National Academy of Sciences of the USA, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.

    Susskind is widely regarded as one of the fathers of string theory, having, with Yoichiro Nambu and Holger Bech Nielsen, independently introduced the idea that particles could in fact be states of excitation of a relativistic string. He was the first to introduce the idea of the string theory landscape in 2003.

  • Yuri Suzuki

    Yuri Suzuki

    Professor of Applied Physics and, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsHer interests are focused on novel ground states and functional properties in condensed matter systems synthesized via atomically precise thin film deposition techniques with a recent emphasis has been on highly correlated electronic systems:
    • Emergent interfacial electronic & magnetic phenomena through complex oxide heteroepitaxy
    • Low dimensional electron gas systems
    • Spin current generation, propagation and control in complex oxide-based ferromagnets
    • Multifunctional behavior in complex oxide thin films and heterostructures

  • Paul Switzer

    Paul Switzer

    Professor of Statistics and of Environmental Earth System Science, Emeritus

    BioDr. Switzer's research interests are in the development of statistical tools for the environmental sciences. Recent research has focused on the interpretation of environmental monitoring data, design of monitoring networks, detection of time trends in environmental and climatic paramenters, modeling of human exposure to pollutants, statistical evaluation of numerical climate models and error estimation for spatial mapping.