School of Medicine
Showing 1-50 of 708 Results
-
Oliver O. Aalami, MD
Clinical Professor, Surgery - Vascular Surgery
Current Research and Scholarly InterestsWe launched a national precision medicine PAD trial called, VascTrac (http://vasctrac.stanford.edu/). This trial is mobile phone based and leverages Apple's ResearchKit Platform to monitor a patient's activity both pre- and post-intervention. We are validating mobile phone surveillance for PAD patients and are currently enrolling.
-
Oscar J. Abilez
Senior Scientist, Cardiothoracic Surgery - Pediatric Cardiac Surgery
Current Research and Scholarly InterestsDr. Abilez' interests are aimed at elucidating how various biophysical and biochemical perturbations regulate early cardiovascular development across time and length scales that span several orders of magnitude, using human pluripotent stem cells as a model system.
-
Kevin M. Alexander, MD, FACC, FHFSA
Assistant Professor of Medicine (Cardiovascular Medicine)
BioDr. Alexander is an advanced heart failure-trained cardiologist. He is also an Assistant Professor of Cardiovascular Medicine at Stanford University School of Medicine.
Dr. Alexander specializes in the management of advanced heart failure and transplant cases, seeing a wide range of patients. He also has an active research laboratory, studying various forms of heart failure.
Dr. Alexander has expertise in diagnosing and treating transthyretin cardiac amyloidosis, a critical yet underdiagnosed cause of heart failure among African Americans and the elderly. He is conducting extensive research to enhance our understanding of this condition, with grant support from the National Institutes of Health and American Heart Association, among other sources. -
Russ B. Altman
Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine, of Biomedical Data Science, Senior Fellow at the Stanford Institute for HAI and Professor, by courtesy, of Computer Science
Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/
-
Cristina Maria Alvira
Associate Professor - University Medical Line, Pediatrics - Critical Care
Current Research and Scholarly InterestsThe overall objective of the Alvira Laboratory is to elucidate the mechanisms that promote postnatal lung development and repair, by focusing on three main scientific goals: (i) identification of the signaling pathways that direct the transition between the saccular and alveolar stages of lung development; (ii) exploration of the interplay between postnatal vascular and alveolar development; and (iii) determination of developmentally regulated pathways that mediate lung repair after injury.
-
Michelle Ameri, BA, RVT
Adm Svcs Admstr 2, Pediatrics - Cardiology
Current Role at StanfordBASE Operations Manager
-
Katrin Andreasson
Edward F. and Irene Thiele Pimley Professor of Neurology and Neurological Sciences
Current Research and Scholarly InterestsOur research focuses on understanding how immune responses initiate and accelerate synaptic and neuronal injury in age-related neurodegeneration, including models of Alzheimer's disease and Parkinson's disease. We also focus on the role of immune responses in aggravating brain injury in models of stroke. Our goal is the identification of critical immune pathways that function in neurologic disorders and that can be targeted to elicit disease modifying effects.
-
Lay Teng Ang
Assistant Professor of Urology
BioAs a stem cell biologist, I aim to understand the mechanisms through which stem cells differentiate into progressively specialized cell types and to harness this knowledge to artificially generate pure populations of desired cell types from stem cells. My work over the past ten years has centered on pluripotent stem cells (PSCs, which include embryonic and pluripotent stem cells), which can generate any of the hundreds of diverse cell types in the body. However, it has been notoriously challenging to guide PSCs to differentiate into a pure population of a given cell type. Current differentiation strategies typically generate heterogeneous cell populations unsuitable for basic research or clinical applications. To address this challenge, I mapped the cascade of branching lineage choices through which PSCs differentiate into various endodermal and mesodermal cell types. I then developed effective methods to differentiate PSCs into specific lineages by providing the extracellular signal(s) that specify a given lineage while inhibiting the signals that induce the alternate fate(s), enabling the generation of highly-pure human heart and bone (Loh & Chen et al., 2016; Cell) and liver (Loh & Ang et al., 2014; Cell Stem Cell) from PSCs. My laboratory currently focuses on differentiating human PSCs into liver progenitors (Ang et al., 2018; Cell Reports) and blood vessel cells (Ang et al., 2022; Cell).
I earned my Ph.D. jointly from the University of Cambridge and A*STAR and was subsequently appointed as a Research Fellow and, later, a Senior Research Fellow at the Genome Institute of Singapore. I then moved my laboratory to Stanford University as a Siebel Investigator and Instructor at the Stanford Institute for Stem Cell Biology & Regenerative Medicine. My laboratory has been supported by the Siebel Investigatorship, California Institute for Regenerative Medicine, and other sources. -
Timothy Angelotti MD, PhD
Clinical Associate Professor, Anesthesiology, Perioperative and Pain Medicine
Current Research and Scholarly InterestsMy research efforts are focused on investigating the pharmacological and physiological interface of the autonomic nervous system with effector organs. Utilizing molecular, cellular, and electrophysiological techniques, we are examining alpha2 adrenergic receptor function in cultured sympathetic neurons. Future research aims will be directed toward understanding neurotransmitter release in general.
-
Martin S. Angst
Professor of Anesthesiology, Perioperative and Pain Medicine (MSD)
Current Research and Scholarly InterestsOur laboratory studies biological and clinical determinants of human resilience using surgery as an injury model.
-
Justin P. Annes M.D., Ph.D.
Associate Professor of Medicine (Endocrinology)
On Partial Leave from 05/01/2024 To 02/28/2025Current Research and Scholarly InterestsThe ANNES LABORATORY of Molecular Endocrinology: Leveraging Chemical Biology to Treat Endocrine Disorders
DIABETES
The prevalence of diabetes is increasing at a staggering rate. By the year 2050 an astounding 25% of Americans will be diabetic. The goal of my research is to uncover therapeutic strategies to stymie the ensuing diabetes epidemic. To achieve this goal we have developed a variety of innovate experimental approaches to uncover novel approaches to curing diabetes.
(1) Beta-Cell Regeneration: Diabetes results from either an absolute or relative deficiency in insulin production. Our therapeutic strategy is to stimulate the regeneration of insulin-producing beta-cells to enhance an individual’s insulin secretion capacity. We have developed a unique high-throughput chemical screening platform which we use to identify small molecules that promote beta-cell growth. This work has led to the identification of key molecular pathways (therapeutic targets) and candidate drugs that promote the growth and regeneration of islet beta-cells. Our goal is to utilize these discoveries to treat and prevent diabetes.
(2) The Metabolic Syndrome: A major cause of the diabetes epidemic is the rise in obesity which leads to a cluster of diabetes- and cardiovascular disease-related metabolic abnormalities that shorten life expectancy. These physiologic aberrations are collectively termed the Metabolic Syndrome (MS). My laboratory has developed an original in vivo screening platform t to identify novel hormones that influence the behaviors (excess caloric consumption, deficient exercise and disrupted sleep-wake cycles) and the metabolic abnormalities caused by obesity. We aim to manipulate these hormone levels to prevent the development and detrimental consequences of the MS.
HEREDIATY PARAGAGLIOMA SYNDROME
The Hereditary Paraganglioma Syndrome (hPGL) is a rare genetic cancer syndrome that is most commonly caused by a defect in mitochondrial metabolism. Our goal is to understand how altered cellular metabolism leads to the development of cancer. Although hPGL is uncommon, it serves as an excellent model for the abnormal metabolic behavior displayed by nearly all cancers. Our goal is to develop novel therapeutic strategies that target the abnormal behavior of cancer cells. In the laboratory we have developed hPGL mouse models and use high throughput chemical screening to identify the therapeutic susceptibilities that result from the abnormal metabolic behavior of cancer cells.
As a physician scientist trained in clinical genetics I have developed expertise in hereditary endocrine disorders and devoted my efforts to treating families affected by the hPGL syndrome. By leveraging our laboratory expertise in the hPGL syndrome, our care for individuals who have inherited the hPGL syndrome is at the forefront of medicine. Our goal is to translate our laboratory discoveries to the treatment of affected families. -
Eric Appel
Associate Professor of Materials Science and Engineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Pediatrics (Endocrinology) and of Bioengineering
Current Research and Scholarly InterestsThe underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.
-
Amin Arbabian
Associate Professor of Electrical Engineering
Current Research and Scholarly InterestsMy group's research covers RF circuits and system design for (1) biomedical, (2) sensing, and (3) Internet of Things (IoT) applications.
-
Shipra Arya
Professor of Surgery (Vascular Surgery)
BioShipra Arya, MD SM FACS is a Professor of Surgery at the Stanford University School of Medicine and section chief of vascular surgery at VA Palo Alto Healthcare System. She has a Master’s degree in epidemiology from the Harvard School of Public Health with focus on research methodology and cardiovascular epidemiology. She completed her General Surgery Residency at Creighton University Medical Center followed by a Vascular Surgery Fellowship at University of Michigan. She has been funded by American Heart Association (AHA), NIH/NIA GEMSSTAR grant, VA Palo Alto Center for Innovation and Implementation (Ci2i), and is currently funded by VA HSR&D for a multicenter stepped wedge cluster randomized clinical trial called “PAtient-centered mUltidiSciplinary Care for vEterans Undergoing Surgery (PAUSE) trial”. Her current work focuses on streamlining frailty evaluation, as well as implementation of patient and system level interventions to improve surgical quality and to provide high-value and patient centered care.
She has multiple administrative roles in surgical quality improvement as Director of Surgical Quality at VAPAHCS; Center director for Stanford University in the Vascular Quality Initiative (VQI); and the Associate Medical Director of the Northern California region for VQI, which is the national registry database and patient safety organization for Society for Vascular Surgery (SVS). Her involvement in SVS VQI also extends to being a member of the steering committee of the Vascular Implant Surveillance and Interventional Outcomes Network (VISION) to improve the quality, safety and effectiveness of vascular care. She also serves as the President of the Surgical Outcomes Club, a national organization of surgical health services researchers, and chairs multiple national committees: VA surgeons committee for the SVS and Diversity and Inclusion Committee for the Association of VA surgeons. -
Euan A. Ashley
Arthur L. Bloomfield Professor of Medicine and Professor of Genetics, of Biomedical Data Science and, by courtesy, of Pathology
Current Research and Scholarly InterestsThe Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve the diagnosis of genetic disease and to personalize the practice of medicine. At the wet bench, we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality in biological pathways and find targets for therapeutic development.
-
Ritu Asija
Clinical Professor, Pediatrics - Cardiology
BioI specialize in providing cardiac critical care to infants, children and adults with congenital heart disease and heart failure. I am the Associate Director for the Pulmonary Artery Reconstruction Program at Stanford, helping to coordinate comprehensive multidisciplinary care for children with severe pulmonary artery abnormalities and right ventricular dysfunction. I was a Faculty Fellow at the Stanford Center for Biodesign in 2019-2020 and continue to work on development of new technologies for the unmet needs of pediatric patients. I have an interest in physician wellness and completed the Wellness Director course through the WellMD Center at Stanford.
-
Themistocles (Tim) Assimes
Associate Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsGenetic Epidemiology, Genetic Determinants of Complex Traits related to Cardiovasular Medicine, Coronary Artery Disease related pathway analyses and integrative genomics, Mendelian randomization studies, risk prediction for major adverse cardiovascular events, cardiovascular medicine related pharmacogenomics, ethnic differences in the determinants of Insulin Mediated Glucose Uptake, pharmacoepidemiology of cardiovascular drugs & outcomes
-
Jennifer Avise, MD
Member, Cardiovascular Institute
BioDr. Avise is a board-certified vascular surgeon specializing in cutting edge treatments of vascular disease. She is a clinical assistant professor in the Department Surgery, Division of Vascular Surgery at Stanford University School of Medicine.
She has helped to expand access to expert vascular surgery in the East Bay, establishing Stanford Health Care’s first vascular surgery practices at the medical center in Emeryville and at the Stanford Health Care – ValleyCare hospital in Pleasanton. Dr. Avise serves as the medical director of the Pleasanton vascular laboratory, an IAC accredited facility, where she advances developments in noninvasive testing to aid in early diagnosis of vascular disease.
Her focus is on early detection and disease prevention, minimally invasive (endovascular) techniques, and complex open surgery. She treats a wide variety of conditions, including aortic aneurysm, limb salvage, varicose veins, peripheral vascular disease, carotid disease, complex wound care, and dialysis access. -
David M. Axelrod, MD
Clinical Professor, Pediatrics - Cardiology
Current Research and Scholarly InterestsVirtual Reality Congenital Heart Disease experience: The Stanford Virtual Heart. Currently engaged with 19 academic medical centers across the globe using our Stanford Virtual Heart to educate students and trainees, and research our VR experience as a means for training and education. Also developing next generation modeling and image interaction with Stanford engineers and educators, to promote personalized surgical training in VR and advanced educational programs in congenital heart disease.
-
Dan E. Azagury, MD, FACS
Associate Professor of Surgery (General Surgery)
Current Research and Scholarly Interests.
-
Leah Backhus
Thelma and Henry Doelger Professor of Cardiovascular Surgery
BioLeah Backhus trained in general surgery at the University of Southern California and cardiothoracic surgery at the University of California Los Angeles. She practices at Stanford Hospital and is Chief of Thoracic Surgery at the VA Palo Alto. Her surgical practice consists of general thoracic surgery with special emphasis on thoracic oncology and minimally invasive surgical techniques. She also has special clinical expertise in adult chest wall surgery (including pectus excavated) and hyperthermic intrathoracic chemotherapy or HITHOC (used to treat mesothelioma and other pleural tumors). She is Co-Director of the Thoracic Surgery Clinical Research Program, and has grant funding through the Veterans Affairs Administration and NIH. Her current research interests are in imaging surveillance following treatment for lung cancer and cancer survivorship. She is a member of the National Lung Cancer Roundtable of the American Cancer Society and the Task Group on Health Equity. She also serves on the Board of Directors of the Society of Thoracic Surgeons. As an educator, Dr. Backhus is the Associate Program Director for the Thoracic Track Residency and is former Chair of the ACGME Residency Review Committee for Thoracic Surgery.
-
Nitish Badhwar
Clinical Professor, Medicine - Cardiovascular Medicine
BioNitish Badhwar, MD is Professor of Medicine and Director of Cardiac Electrophysiology Training Program at Stanford University School of Medicine. Dr. Badhwar received his medical degree from Maulana Azad Medical College (University of Delhi, India). After completing his internal medicine training from New York Hospital of Queens (affiliated with Cornell Medical School), he worked as faculty in the Department of Medicine at Hospital of St. Raphael (Yale University School of Medicine). He completed Cardiac Electrophysiology training at UCSF with Dr. Scheinman. After being on faculty at UCSF for 15 years he recently joined the Arrhythmia Service at Stanford Hospital. He is a Fellow of American College of Cardiology and Heart Rhythm Society. He has been named best doctor in cardiac electrophysiology in San Francisco Magazine 3 years in a row (2015-2017). This is nominated by his peers. He was given Excellence in Teaching award in Medical Education by Academy of Medical Educators in 2015. He was an invited speaker at prestigious international meetings including Oriental Congress of Cardiology (OCC) in Shanghai, China; Cardiostim EHRA /Europace in Nice, France; Asia Pacific Heart Rhythm Society (APHRS) in Seoul, S Korea; American Heart Association Annual Scientific Session in New Orleans, LA and Indian Heart Rhythm Society in New Delhi, India.
Clinical Interest: Dr. Badhwar's clinical interest is in complex catheter ablation procedures including mapping and ventricular tachycardia (VT), atrial fibrillation (AF) and supraventricular tachycardia (SVT) including junctional variants of SVT. He started the epicardial ablation program at UCSF and also worked with Dr. Randall Lee to perform the first percutaneous epicardial left atrial appendage (LAA) ligation in the Bay Area in patients with atrial fibrillation. He has also differentiated himself in the field of electrophysiology by performing hybrid procedures with CT surgeons in patients with AF and VT. He is also involved in device implantation including pacemakers, ICD and biventricular pacing for heart failure.
Research Interest: Dr. Badhwar has published electrophysiologic characteristics of SVTs including atrial tachycardia arising from the coronary sinus musculature, para-hisian atrial tachycardia, left sided AVNRT, junctional tachycardia and nodofascicular tachycardia. He has also published on the use of nuclear medicine (ERNA) in assessing left ventricular dyssynchrony as well as optimal pacing sties in patients with heart failure requiring biventricular pacing. He has described the unique clinical characteristics of epicardial idiopathic VT arising from the cardiac crux. He has also published clinical outcomes of combining LAA ligation with catheter ablation of atrial fibrillation perform (first in human percutaneous closed chested Maze procedure) and is now part of a multi-center randomized study comparing standard ablation to ablation plus LAA ligation in patients with persistent atrial fibrillation (aMAZE trial). -
Julie Baker
Professor of Genetics
Current Research and Scholarly InterestsWe examine how cells communicate and function during fetal development. The work in my laboratory focuses on the establishment of specific cell fates using genomics to decipher interactions between chromatin and developmental signaling cascades, between genomes and rapidly evolving cell types, and between genomic copy number variation and gene expression. In recent years we have focused on the vastly understudied biology of the trophoblast lineage, particularly how this lineage evolved.
-
Laurence Baker
Josephine Knotts Knowles Professor of Human Biology, Senior Fellow at the Stanford Institute for Economic Policy Research and Professor, by courtesy, of Economics
Current Research and Scholarly InterestsDr. Baker's research is in the area of health economics, and focuses on the effects of financial incentives, organizational structures, and government policies on the health care delivery system, health care costs, and health outcomes.
-
Zhenan Bao
K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry
BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 215.
Bao is a member of the US National Academy of Sciences, National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.
Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.
Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001. -
Tina Baykaner
Assistant Professor of Medicine (Cardiovascular Medicine)
BioTina Baykaner is an Assistant Professor in the Department of Internal Medicine, Division of Cardiovascular Medicine and Electrophysiology. Following internal medicine residency, cardiovascular medicine and advanced heart failure fellowship trainings at University of California, San Diego and electrophysiology fellowship at Stanford University, Dr. Baykaner joined Stanford University faculty in 2018. She has published over 200 papers, book chapters and abstracts including over 100 original peer-reviewed articles, and delivered over 100 invited presentations in national and international meetings. She serves as associate editor, section editor and editorial board member of four electrophysiology journals and served in guideline writing committees.
Dr. Baykaner’s current research interests include outcomes research, epidemiology and mechanisms of rhythm disorders. She is currently funded by the National Institutes of Health to study patient related outcomes regarding atrial fibrillation (AF) ablation. She received prior research funding from American Heart Association and Heart Rhythm Society. Dr. Baykaner's clinical practice focuses on ablation of atrial and ventricular arrhythmias, SVTs, inappropriate sinus tachycardia management, device implantation and device extraction.
Dr. Baykaner is an active member of American Heart Association (AHA), American College of Cardiology (ACC), Heart Rhythm Society (HRS) and European Society of Cardiology (ESC). She serves as an elected member of the Digital Health Committee for HRS, and previously served as an elected member of the HRS Communications Committee and ACC Task Force ICD research committee. -
Hans-Christoph Becker, MD, FSABI, FSCCT
Clinical Professor, Radiology
Current Research and Scholarly InterestsMyocardial bridges (MB) with associated upfront atherosclerotic lesions are common findings on coronary computed tomography angiography (CTA). Abnormal septal wall motion in exercise echocardiography (EE) may to be associated with MB. Intravascular ultrasound (IVUS) is considered the gold standard for the detection of MB. We investigate whether CTA is comparable to IVUS for the assessment of MB and upstream plaques in symptomatic patients with suspicion for MB raised by EE.
-
Gill Bejerano
Professor of Developmental Biology, of Computer Science, of Pediatrics (Genetics) and of Biomedical Data Science
Current Research and Scholarly Interests1. Automating monogenic patient diagnosis.
2. The genomic signatures of independent divergent and convergent trait evolution in mammals.
3. The logic of human gene regulation.
4. The reasons for sequence ultraconservation.
5. Cryptogenomics to bridge medical silos.
6. Cryptogenetics to debate social injustice.
7. Managing patient risk using machine learning.
8. Understanding the flow of money in the US healthcare system. -
Edward Bender
Clinical Professor, Cardiothoracic Surgery
BioDr. Edward Bender specializes in the treatment of adult cardiac abnormalities, including ischemic heart disease, structural and valvular disease, and arrhythmias. Additionally, he has an interest and expertise in General Thoracic and Vascular surgery. Dr. Bender currently works with organizations within the medical community to develop software to aid in the teaching and practice of medicine.
-
Daniel Bernstein
Alfred Woodley Salter and Mabel G. Salter Endowed Professor of Pediatrics
Current Research and Scholarly Interests1. Using iPSC-derived cardiomyocytes to understand hypertrophic cardiomyopathy and heart failure associated with congenital heart disease.
2. Role of alterations in mitochondrial dycamics and function in normal physiology and disease.
3. Differences between R and L ventricular responses to stress,
4. Immune biomarkers of risk after pediatric VAD implantation.
5. Biomarkers for post-transplant lymphoproliferative disorder. -
Gerald Berry
Richard Kempson, M.D., Professor of Surgical Pathology
Current Research and Scholarly InterestsCardiopulmonary and pulmonary transplant medicine; diagnostic surgical pathology
-
Mark Francis Berry, MD
Mylavarapu Rogers Professor of Cardiothoracic Surgery
BioDr. Berry joined the Division of Thoracic Surgery at Stanford in August 2014. He came to Stanford from Duke University, where he had most recently served as Associate Professor. He received his medical degree at the University of Pennsylvania School of Medicine after receiving bachelors and masters degrees in Electrical Engineering at the University of Pennsylvania. He completed his residency in Cardiothoracic Surgery at Duke University Medical Center after performing a residency in General Surgery at the Hospital of the University of Pennsylvania. His Cardiothoracic Surgical training included a year dedicated to Minimally Invasive General Thoracic Surgery, a period that also included an American Association for Thoracic Surgery sponsored Traveling Fellowship at the University of Pittsburgh.
Dr. Berry practices all aspects of thoracic surgery, including procedures for benign and malignant conditions of the lung, esophagus, and mediastinum. He has a particular interest in minimally invasive techniques, and has extensive experience in treating thoracic surgical conditions using video-assisted thoracoscopic surgical (VATS), laparoscopic, robotic, endoscopic, and bronchoscopic approaches. He serves as the co-Director of the Stanford Minimally Invasive Thoracic Surgery Center (SMITS), and has both directed and taught in several minimally invasive thoracic surgery courses.
Dr. Berry also has a Masters of Health Sciences in Clinical Research from Duke University. His clinical research activities mirror his clinical interests and activities in optimizing short-term and long-term outcomes of patients with thoracic surgical conditions. He has more than 150 peer-reviewed publications, most of which are related to both the use of minimally invasive thoracic surgical techniques as well as evaluating outcomes after treatment of thoracic malignancies. His clinical practice and his research both focus on choosing the most appropriate treatment and approach for patients based on the individual characteristics of the patient and their disease process. -
Vivek Bhalla, MD
Associate Professor of Medicine (Nephrology)
Current Research and Scholarly InterestsDr. Bhalla's two primary research interests are in the role of the kidney in diabetes and hypertension. We use molecular, biochemical, and transgenic approaches to study: (1) mechanisms diabetic kidney disease disease including the role of the endothelium to regulate inflammation and kidney injury; and (2) regulation of tubular transport of glucose, sodium, and potassium. These latter studies have treatment implications in diabetes, kidney disease, and hypertension.
-
Ami Bhatt
Professor of Medicine (Hematology) and of Genetics
Current Research and Scholarly InterestsThe Bhatt lab is exploring how the microbiota is intertwined with states of health and disease. We apply the most modern genetic tools in an effort to deconvolute the mechanism of human diseases.
-
Y. Katherine Bianco
Clinical Professor, Obstetrics & Gynecology - Maternal Fetal Medicine
BioMy clinical interest in pregnancies complicated with birth defects has led my underlying research interests in genomic abnormalities in the human trophoblast carrying to faulty placentation. The latter began with initial work during K12 and KO8 funding. I took a great interest in the human placenta as it carries potential advantages over other tissues sources: first, this highly metabolically active organ is the potential source of many transcripts. Second, the placenta forms at a very early stage of embryonic development, potentially allowing detection of primary alterations as compared to secondary changes that may mask the underlying causal phenomena. Finally, studying early placentation may provide targets for development of novel molecular approaches, such as up-regulate or down-regulate genes, the protein products of which could potentially serve as molecular surrogates for diagnosis and treatment of pregnancy complication such as miscarriages, pre-eclampsia, pregnancy induced hypertension and intrauterine growth retardation. This work has led to the first Trisomy 21, Trisomy 18, trisomy 13 cell lines established from human placentas making it possible to apply gene editing in the early stages of human trophoblast development.
As my primary clinical responsibility involves treating patients needing medical care and support through their high risk pregnancies, I am interested in factors that may impact outcomes, such as prenatal screening and diagnosis, maternal heart conditions, labor and delivery management, and safety approaches for the second stage of labor. In investigating length of labor and approaches to shorten the second stage, I have found methods of improving perinatal outcomes in diverse maternal populations.
With regards to my interest in fetal medicine, I have worked in collaboration with other specialists such as radiologists and pediatric cardiologists utilizing imagining studies to assess and determine successful perinatal care and fetal survival. -
Sandip Biswal, MD
Adjunct Clinical Professor, Radiology
Current Research and Scholarly InterestsThe management of individuals suffering from chronic pain is unfortunately limited by poor diagnostic tests and therapies. Our research group is interested in 'imaging pain' by using novel imaging techniques to study peripheral nociception and inflammation with the goal of accurately identifying the location of pain generators. We are developing new approaches with positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET/MRI) and are currently in clinical trials.