School of Medicine
Showing 12,401-12,450 of 12,897 Results
-
Shin Yajima
Postdoctoral Scholar, Cardiothoracic Surgery
BioI am a board-certified cardiothoracic surgeon in Japan. Throughout my clinical experience and research, I realized that insufficient myocardial blood flow had little impact on myocardial functional recovery because percutaneous coronary intervention or coronary artery bypass grafting (CABG) could approach and supply blood flow to the superficial large coronary arteries, but not to intramyocardial microvascular arteries, especially where microvasculature was scarce or absent. Moreover, myocardial ischemia-reperfusion (I/R) impaired cardiac functional recovery in ischemic hearts, including transplanted hearts. As a result, my research interests include myocardial microvascular dysfunction and myocardial I/R injury.
During my Ph.D. studies in cardiovascular surgery, I focused on a prostacyclin analog that inhibits thromboxane A2 synthase and promotes angiogenesis and restores myocardial blood flow via proangiogenic and vasodilatory effects. Direct epicardial placement of a microform of this compound in a porcine ischemia cardiomyopathy model resulted in enhanced myocardial angiogenesis and recovery of myocardial function. Then, I developed nanoparticles (NPs) that contained this compound, which I applied to a rat ischemia myocardial reperfusion model with intravenous injection to demonstrate attenuated myocardial I/R injury with selective accumulation in the ischemic myocardium, better-preserved capillary networks, better-preserved myocardial blood flow, and a smaller infarct size. Using induced pluripotent stem cells (iPSCs) and adipose-derived mesenchymal stem cells, I have also worked on tissue engineering for myocardial regeneration. With direct implantation of cardiomyocyte sheets derived from human iPSCs onto ischemic myocardial tissue, we elucidated myocardial regeneration through thickened myocardial tissue, proangiogenic effects, improved cardiac performance, and reduced left ventricular remodeling in both small and large animals. These works have already been published (representative examples are provided below), and I have received a number of academic honors and research grants (ongoing research support; Japan Heart Foundation/Bayer Research Grant Abroad, 01/01/2022 - 12/31/2022).
My career goal is to attain leadership in academic cardiovascular surgery. During my postdoctoral fellowship, I intend to create novel therapeutic methods to improve the outcomes of ischemic heart disease through engineering analysis and the development of innovative solutions. My mentor, Dr. Woo, is a distinguished mentor with a stellar reputation for training academic surgeons, and Stanford University provides extraordinary research resources. I feel extremely fortunate to have such an ideal environment in which to carry out this project and continue bioengineering's advancement of cardiothoracic surgery. -
Lisa Yamada
Software Developer 2, SoM - CNC - Cracking the Neural Code
BioLisa Yamada is a PhD candidate in Electrical Engineering, working with Professor Paul Nuyujukian in the Brain Interfacing Laboratory at Stanford University. She is interested in applying data science and engineering tools for medical applications towards higher quality and more equitable care. As a computational neuroscientist and clinical research coordinator, she is currently investigating quantitative measures for seizure analyses using human neuroelectrophysiology data (e.g., intracortical EEGs of participants with refractory epilepsy). She graduated from Trinity College (Hartford, CT) with BS degrees in Electrical Engineering and Mathematics and earned her MS in Electrical Engineering from Stanford University. In her free time, she enjoys outdoor activities like hiking.
-
Hao Yan
Postdoctoral Scholar, Bone Marrow Transplantation
BioAs a highly motivated researcher with a passion for conducting basic research that has direct implications for patient care, I have completed my Ph.D. training in physiology in China and pursued postdoctoral training in the United States. My academic training and research experience have provided me with an excellent background in multiple biological disciplines including developmental biology, gerontology, immunology, and pre-clinic research. As a doctoral student with Dr. Guoliang Xia, I focused on mammalian ovary development and aging with the goal of improving the in-vitro fertilization process for cancer patients and women over 40, and aimed to uncover the mechanisms that control the non-renewable oocyte activation and slow down its quantity and quality loss during aging.
During my Ph.D. training, I became interested in immunology research, inspired by my involvement in a project on maternal-fetal immunotolerance. In naturally conceived pregnancies, the fetus is semi-allogeneic to the mother, and the maternal immune system is exposed to foreign HLA antigens from the child. However, the fetus is well-tolerated within a specific time window. As a postdoctoral fellow at Stanford University, I joined the lab of Dr. Robert Negrin, a renowned leader in the bone marrow transplantation (BMT)/GVHD field, to explore immunotolerance-related issues such as graft-versus-host disease and blood malignancies. -
Yasuaki Yanagawa
Postdoctoral Scholar, Infectious Diseases
BioRNAseq for Entaoeba histolytica
-
Fan Yang
Associate Professor of Orthopaedic Surgery and of Bioengineering
Current Research and Scholarly InterestsOur lab’s mission is to develop therapies for regenerating human tissues lost due to diseases or aging, and to build tissue engineered 3D models for understanding disease progression and informing drug discovery. We invent biomaterials and engineering tools to elucidate and modulate biology, and also use biology to inform materials and engineering design. Our work is highly interdisciplinary, and is driven by unmet clinical needs or key gaps in biology.
-
Lu Yang
Instructor, Pathology
BioPhysician-scientist with broad interests in genetics/genomics, cell biology, developmental biology, cancer, clinical pathology, bioinformatics, and computer vision.