School of Medicine
Showing 12,801-12,850 of 12,937 Results
-
Yanxian Zhang
Postdoctoral Scholar, Endocrinology and Metabolism
BioThrough my academic training and research experience, I have cultivated a strong foundation in engineering and molecular biology. My work involves integrating diverse concepts from disciplines such as chemical engineering, protein engineering, supramolecular chemistry, and biophysics to address complex biomedical challenges. As a graduate student with Dr. Jie Zheng, my research focused on both natural and synthetic macromolecules. My research involved utilizing polymer chemistry to design biocompatible multifunctional hydrogels, as well as investigating the thermodynamics of amyloid proteins associated with neurodegenerative diseases. Leveraging my expertise in thermodynamics and supramolecular chemistry, I contributed to the study of understanding protein misfolding and aggregation. I identified sequence-independent inhibitors to prevent protein misfolding and developed a rational strategy for inhibitor design, enabling cross-interaction activity and the fluorescent detection of amyloids. Driven by a strong interest in translational research, I pursued postdoctoral training here at Stanford School of Medicine. In Dr. Danny Hung-Chieh Chou's lab at Stanford University, I received comprehensive training in peptide engineering and molecular biology. I am dedicated to addressing formulation challenges for insulin with stable ultra-concentrated and ultra-fast properties, aimed at miniaturizing insulin pumps and advancing the next-generation of insulin automatic delivery systems. This work is supported by the JDRF postdoctoral fellowship. Furthermore, I am working on therapeutics development and have successfully developed an insulin derivative that acts as a full insulin receptor antagonist. This development holds promise as a candidate for treating the rare disease of hyperinsulinism. Throughout my postdoctoral training, I have gained proficiency in grant writing, public speaking, and mentoring students. These experiences have significantly strengthened my skills as an independent investigator. Looking forward, my research goal is to develop innovative strategies that support the functionality and delivery of biological therapies.
-
Yu Zhang
Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)
BioDr. Yu Zhang's research operates at the intersection of AI, translational neuroscience, and precision medicine. His work focuses on unraveling the complex neurobiological mechanisms underlying cognitive deficits, behavioral dysfunctions, and therapeutic responses in mental health disorders. By integrating advanced machine learning techniques with multimodal brain imaging modalities (e.g., fMRI, DTI, EEG), Dr. Zhang aims to identify neural signatures that reveal the heterogeneity of mental disorders across individuals. A central goal of his research is the development and validation of robust neurobiomarkers to improve diagnostic accuracy, refine prognostic assessments, and guide personalized treatment strategies. His work systematically characterizes brain function and dysfunction to optimize therapeutic interventions, including pharmacological treatments, psychotherapy, and neurostimulation. He is particularly focused on conditions such as Alzheimer’s disease and related dimentia, mood disorders, and neurodevelopmental disorders (e.g., ADHD, ASD), where individualized approaches are essential for improving patient outcomes.
Dr. Zhang has received several grants including the R01, R21, and Alzheimer's Association AARG grant. Beyond foundational research, Dr. Zhang is committed to bridging the gap between computational innovation and clinical application. By collaborating with clinicians, neuroscientists, and engineers, he strives to translate data-driven insights into actionable tools for real-world healthcare settings. His long-term vision is to enable mental health diagnostics and treatment to be guided by objective, biologically grounded biomarkers, thereby enhancing quality of life and long-term outcomes for individuals with psychiatric and neurological conditions.
The Stanford Precision NeuroIntelligence (SPNI) Lab, led by Dr. Zhang, is dedicated to advancing research in AI-driven neuroimaging and precision psychiatry. The lab develops and applies cutting-edge machine learning and deep learning methods to uncover neurobiological mechanisms associated with cognitive and behavioral dysfunctions, as well as treatment responses in mental health conditions. Its mission is to identify translational biomarkers that support precision diagnosis, prognosis, and targeted interventions for mood disorders, neurodevelopmental disorders, and neurodegenerative diseases. -
Yuan Zhang
Basic Life Research Scientist, Psych/Major Laboratories and Clinical & Translational Neurosciences Incubator
Current Role at StanfordBasic Life Research Scientist
-
Man Zhao
Postdoctoral Scholar, Radiation Biology
BioMy research primarily focuses on the molecular mechanisms, signaling pathways, and therapeutic targets underlying cancer metabolism, particularly the m6A demethylase FTO. I am also actively exploring the interplay between tumor metabolism and tumor immunity, with the goal of identifying novel metabolic vulnerabilities for cancer treatment.
-
Renee Zhao
Assistant Professor of Mechanical Engineering and, by courtesy, of Bioengineering and of Materials Science and Engineering
BioRuike Renee Zhao is an Assistant Professor of Mechanical Engineering at Stanford University, where she directs the Soft Intelligent Materials Laboratory. Originally from the historic city of Xi'an, she earned her BS from Xi'an Jiaotong University in 2012. She then pursued Solid Mechanics at Brown University, obtaining her MS in 2014 and PhD in 2016. Following her doctoral studies, she completed postdoctoral training at MIT (2016–2018) before serving as an Assistant Professor at The Ohio State University (2018–2021).
Renee’s research focuses on developing stimuli-responsive soft composites for multifunctional robotic systems with integrated shape-changing, assembly, sensing, and navigation capabilities. By integrating mechanics, material science, and advanced material manufacturing, her work enables innovations in soft robotics, miniaturized biomedical devices, robotic surgery, origami systems, active metamaterials, and general deployable morphing structures.
Her contributions have been recognized with honors and awards, including the Presidential Early Career Award for Scientists and Engineers (PECASE), DARPA Young Faculty Award (YFA, 2025), ARO Early Career Program (ECP) Award (2023), AFOSR Young Investigator Research Program (YIP) Award (2023), Eshelby Mechanics Award for Young Faculty (2022), ASME Henry Hess Early Career Publication Award (2022), ASME Pi Tau Sigma Gold Medal (2022), ASME Applied Mechanics Division Journal of Applied Mechanics Award (2021), NSF CAREER Award (2020), and ASME Applied Mechanics Division Haythornthwaite Research Initiation Award (2018). She is also recognized as a National Academy of Sciences Kavli Fellow and was named one of MIT Technology Review's 35 Innovators Under 35. -
Tianyu Zhao
Postdoctoral Scholar, Radiation Biology
Current Research and Scholarly InterestsHow p53 affects the tissue homeostasis in lung cancer and injury.
-
Yanan Zhao
Postdoctoral Scholar, Psychiatry
BioYanan completed her Ph.D. degree at Fudan University, where she uncovered the mechanisms of sleep transitions from the evolutionary point of view in Dr Zhili Huang’s lab, with a combination of optogenetics, in vivo electrophysiology, fiber photometry, polysomnography, immunohistochemistry and so on. In the de Lecea lab, Yanan is now curious about how sleep regulates the balance between DNA damage and repair with approaches of imaging. At the same time, she is interested in larger scale imaging during different brain states. Outside the lab, Yanan enjoys biking and exploring the sunny bay area.
-
Yihan Zhao
Masters Student in Biomedical Data Science, admitted Autumn 2024
Bio* Part-time Adult, Lover for Hiking, Photograph, Jazz, Surfing, Pool
* AI4Health
* How Human make better AI? How AI make better Human?
* I want to make: Anticancer Drugs, Contraceptive for Male, Artificial Womb, Weight Loss Pills
Don't create opium, create a forest, create air and water -
Moss Zhao
Instructor, Neurosurgery
BioDr. Moss Zhao is an Instructor at Department of Neurosurgery, Stanford University. He develops cutting-edge and clinically viable imaging technologies to improve the diagnosis and treatment of cerebrovascular diseases across the lifespan. His specific areas of expertise include physiological modeling, arterial spin labeling, Bayesian inference, PET/MRI, and artificial intelligence. His scientific contributions could significantly improve the early detection of strokes and dementia as well as enrich the knowledge of brain development in the first two decades of life.
Dr. Zhao received his DPhil at St Cross College of University of Oxford under the supervision of Prof. Michael Chappell. As an alumni mentor, he supports the career development of students of his alma mater. Since 2016, he has presented his work to more than 3000 delegates at international conferences and held leadership positions in professional societies. His research and teaching are supported by the American Heart Association, the National Institutes of Health, and the European Cooperation in Science and Technology. -
Hong Zheng
Research Engineer, Med/BMIR-ITI Institute
BioMy research focuses on understanding the multi-omic landscape (genomics, epigenomics, transcriptomics, etc.) and immune responses in human diseases (cancer, aging, and infectious diseases, etc.), and identifying robust gene signatures and targets for disease diagnostics, prognostics, and therapeutics.