Stanford Woods Institute for the Environment


Showing 101-110 of 232 Results

  • Lily Hsueh

    Lily Hsueh

    Affiliate, Woods Institute
    Visiting Scholar, Woods Institute

    BioLily Hsueh is an Associate Professor of Economics and Public Policy in the School of Public Affairs at the Arizona State University (ASU) and a Visiting Scholar in the Woods Institute for the Environment at Stanford University. Her research investigates how different forms and scales of alternative and decentralized governance systems (e.g., market-based policies and voluntary programs) interact and shape the public and private provision of public goods and the management of natural resources and the environment. Questions of interest to Dr. Hsueh include, will decentralized environmental approaches produce real and sizeable impact? If so, by how much? Under what economic and political conditions do they work? How should they be designed? Who (and which groups) stand to gain or lose?

    Funders for Dr. Hsueh's work include the National Research Council, National Oceanic and Atmospheric Administration (NOAA), and the V. Kann Rasmussen Foundation. Prior to joining ASU, Dr. Hsueh was a National Research Council Postdoctoral Fellow at NOAA. She holds a Ph.D. in Public Policy & Management from the University of Washington, a MSc in Economics from University College London, and a BA in Economics from UC Berkeley.

    At Woods, Dr. Hsueh is currently completing a MIT Press-contracted book in progress, which investigates the demand for, and supply of, global businesses' climate mitigation and adaptation, across sectors and in rich and poor countries. The book draws on large-N statistical analyses and and illustrative company case studies. It examines the multi-faceted factors across levels of governance and government, which motivate some global businesses but not others to engage in proactive climate action.

    https://www.lilyhsueh.com/

  • Gianluca Iaccarino

    Gianluca Iaccarino

    Professor of Mechanical Engineering

    Current Research and Scholarly InterestsComputing and data for energy, health and engineering

    Challenges in energy sciences, green technology, transportation, and in general, engineering design and prototyping are routinely tackled using numerical simulations and physical testing. Computations barely feasible two decades ago on the largest available supercomputers, have now become routine using turnkey commercial software running on a laptop. Demands on the analysis of new engineering systems are becoming more complex and multidisciplinary in nature, but exascale-ready computers are on the horizon. What will be the next frontier? Can we channel this enormous power into an increased ability to simulate and, ultimately, to predict, design and control? In my opinion two roadblocks loom ahead: the development of credible models for increasingly complex multi-disciplinary engineering applications and the design of algorithms and computational strategies to cope with real-world uncertainty.
    My research objective is to pursue concerted innovations in physical modeling, numerical analysis, data fusion, probabilistic methods, optimization and scientific computing to fundamentally change our present approach to engineering simulations relevant to broad areas of fluid mechanics, transport phenomena and energy systems. The key realization is that computational engineering has largely ignored natural variability, lack of knowledge and randomness, targeting an idealized deterministic world. Embracing stochastic scientific computing and data/algorithms fusion will enable us to minimize the impact of uncertainties by designing control and optimization strategies that are robust and adaptive. This goal can only be accomplished by developing innovative computational algorithms and new, physics-based models that explicitly represent the effect of limited knowledge on the quantity of interest.

    Multidisciplinary Teaching

    I consider the classical boundaries between disciplines outdated and counterproductive in seeking innovative solutions to real-world problems. The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system requires the analysis of their flow, thermal, and structural characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing in multiphysics settings. Virtual prototyping is a staple of modern engineering practice! I have designed a new undergraduate course as an introduction to Computational Engineering, covering theory and practice across multidisciplanary applications. The emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal/structural problems, the course develops the essential concepts of Verification and Validation for engineering simulations, providing the basis for assessing the accuracy of the results.

  • John P.A. Ioannidis

    John P.A. Ioannidis

    Professor of Medicine (Stanford Prevention Research), of Epidemiology and Population Health and by courtesy, of Statistics and of Biomedical Data Science

    Current Research and Scholarly InterestsMeta-research
    Evidence-based medicine
    Clinical and molecular epidemiology
    Human genome epidemiology
    Research design
    Reporting of research
    Empirical evaluation of bias in research
    Randomized trials
    Statistical methods and modeling
    Meta-analysis and large-scale evidence
    Prognosis, predictive, personalized, precision medicine and health
    Sociology of science

  • Rob Jackson

    Rob Jackson

    Michelle and Kevin Douglas Provostial Professor and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy

    BioRob Jackson and his lab examine the many ways people affect the Earth. They seek basic scientific knowledge and use it to help shape policies and reduce the environmental footprint of global warming, energy extraction, and other issues. They're currently examining the effects of climate change and droughts on forest mortality and grassland ecosystems. They are also working to measure and reduce greenhouse gas emissions through the Global Carbon Project (globalcarbonproject.org), which Jackson chairs; examples of new research Rob leads include establishing a global network of methane tower measurements at more than 80 sites worldwide and measuring and reducing methane emissions from oil and gas wells, city streets, and homes and buildings.

    As an author and photographer, Rob has published a trade book about the environment (The Earth Remains Forever, University of Texas Press), two books of children’s poems, Animal Mischief and Weekend Mischief (Highlights Magazine and Boyds Mills Press), and recent or forthcoming poems in the journals Southwest Review, Cortland Review, Cold Mountain Review, Atlanta Review, LitHub, and more. His photographs have appeared in many media outlets, including the NY Times, Washington Post, USA Today, US News and World Report, Science, Nature, and National Geographic News.

    Rob is a recent Guggenheim Fellow and sabbatical visitor in the Center for Advanced Study in the Behavioral Sciences. He is also a Fellow in the American Academy of Arts and Sciences, American Association for the Advancement of Science, American Geophysical Union, and Ecological Society of America. He received a Presidential Early Career Award in Science and Engineering from the National Science Foundation, awarded at the White House.

  • Mark Z. Jacobson

    Mark Z. Jacobson

    Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy

    BioMark Z. Jacobson’s career has focused on better understanding air pollution and global warming problems and developing large-scale clean, renewable energy solutions to them. Toward that end, he has developed and applied three-dimensional atmosphere-biosphere-ocean computer models and solvers to simulate air pollution, weather, climate, and renewable energy. He has also developed roadmaps to transition states and countries to 100% clean, renewable energy for all purposes and computer models to examine grid stability in the presence of high penetrations of renewable energy.

  • Thomas Johnson

    Thomas Johnson

    Water Communication and Knowledge Manager, Stanford Woods Institute for the Environment

    BioTom manages communications for two water-related programs within the Stanford Woods Insitute for the Environment: Water in the West; and Water, Health & Development. Prior to coming to Stanford in 2022, Tom managed a graduate program at Cal Poly San Luis Obispo that prepared students for careers in the dairy foods industry. A seasoned communications professional, he once served as business editor at The Coloradoan, a Gannett daily newspaper, and was editor of Outlook Magazine, a publication of Colorado State University's College of Natural Sciences. Tom earned a Master's degree in Watershed Science from Colorado State University and was the founding director of the Colorado Springs-based Fountain Creek Watershed Project, an intergovernmental task force that won consensus buy-in for a plan that guides management of the Pikes Peak watershed. Tom is also an award-winning cheesemaker and musician.

  • James Holland Jones

    James Holland Jones

    Professor at the Stanford Doerr School of Sustainability and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsI am a biological anthropologist with primary research interests in evolutionary demography and life history theory. In addition these fundamental interests in the evolution of human life histories, I work at the intersection of disease ecology, the analysis of dynamical systems, and social network analysis. My work combines the formalisms of population biology, statistics, and social network analysis to address fundamental problems in biodemography, epidemiology, and human decision-making in variable environments.

  • Rob Jordan

    Rob Jordan

    Associate Editor, Environment and Sustainability, Woods Institute

    Current Role at StanfordAssociate Editor, Environment and Sustainability, Stanford Woods Institute for the Environment