Stanford Doerr School of Sustainability


Showing 1-32 of 32 Results

  • Greg Beroza

    Greg Beroza

    Wayne Loel Professor of Earth Science

    Current Research and Scholarly InterestsEarthquake seismology

  • Biondo Biondi

    Biondo Biondi

    Barney and Estelle Morris Professor

    Current Research and Scholarly InterestsResearch
    My students and I devise new algorithms to improve the imaging of reflection seismic data. Images obtained from seismic data are the main source of information on the structural and stratigraphic complexities in Earth's subsurface. These images are constructed by processing seismic wavefields recorded at the surface of Earth and generated by either active-source experiments (reflection data), or by far-away earthquakes (teleseismic data). The high-resolution and fidelity of 3-D reflection-seismic images enables oil companies to drill with high accuracy for hydrocarbon reservoirs that are buried under two kilometers of water and up to 15 kilometers of sediments and hard rock. To achieve this technological feat, the recorded data must be processed employing advanced mathematical algorithms that harness the power of huge computational resources. To demonstrate the advantages of our new methods, we process 3D field data on our parallel cluster running several hundreds of processors.

    Teaching
    I teach a course on seismic imaging for graduate students in geophysics and in the other departments of the School of Earth Sciences. I run a research graduate seminar every quarter of the year. This year I will be teaching a one-day short course in 30 cities around the world as the SEG/EAGE Distinguished Instructor Short Course, the most important educational outreach program of these two societies.

    Professional Activities
    2007 SEG/EAGE Distinguished Instructor Short Course (2007); co-director, Stanford Exploration Project (1998-present); founding member, Editorial Board of SIAM Journal on Imaging Sciences (2007-present); member, SEG Research Committee (1996-present); chairman, SEG/EAGE Summer Research Workshop (2006)

  • Jef Caers

    Jef Caers

    Professor of Earth and Planetary Sciences and, by courtesy, of Geophysics

    Current Research and Scholarly InterestsMy research focuses on assuring 100% renewable energy through development of geothermal energy and critical mineral supply, developing approaches from data acquisition to decision making under uncertainty and risk assessment.

  • Jon Claerbout

    Jon Claerbout

    Cecil H. and Ida M. Green Professor of Geophysics, Emeritus

    Current Research and Scholarly InterestsReflection Seismology

  • Simone D'Amico

    Simone D'Amico

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Geophysics

    BioSimone D’Amico is Associate Professor of Aeronautics and Astronautics (AA), W.M. Keck Faculty Scholar in the School of Engineering, and Professor of Geophysics (by Courtesy). He is the Founding Director of the Space Rendezvous Laboratory and Director of the AA Undergraduate Program. He received the B.S. and M.S. degrees from Politecnico di Milano (2003) and the Ph.D. degree from Delft University of Technology (2010). Before Stanford, Dr. D’Amico was research scientist and team leader at the German Aerospace Center (DLR) for 11 years. There he gave key contributions to formation-flying and proximity operations missions such as GRACE (NASA/DLR), PRISMA (OHB/DLR/CNES/DTU), TanDEM-X (DLR), BIROS (DLR) and PROBA-3 (ESA). His research aims at enabling future miniature distributed space systems for unprecedented remote sensing, space and planetary science, exploration and spaceflight sustainability. To this end he performs fundamental and applied research at the intersection of advanced astrodynamics, spacecraft Guidance, Navigation and Control (GNC), autonomy, decision making and space system engineering. Dr. D’Amico is institutional PI of three upcoming autonomous satellite swarm missions funded by NASA and NSF, namely STARLING, VISORS, and SWARM-EX. He is Fellow of AAS, Associate Fellow of AIAA, Associate Editor of AIAA JGCD, Advisor of NASA and several space startups. He was the recipient of several awards, including Best Paper Awards at IAF (2022), IEEE (2021), AIAA (2021), AAS (2019) conferences, the Leonardo 500 Award by the Leonardo da Vinci Society/ISSNAF (2019), FAI/NAA’s Group Diploma of Honor (2018), DLR’s Sabbatical/Forschungssemester (2012) and Wissenschaft Preis (2006), and NASA’s Group Achievement Award for the GRACE mission (2004).

  • Eric Dunham

    Eric Dunham

    Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • William Ellsworth

    William Ellsworth

    Professor (Research) of Geophysics, Emeritus

    BioMy research interests can be broadly defined as the study of active faults, the earthquakes they generate and the physics of the earthquake source. A major objective of my work is to improve our knowledge of earthquake hazards through the application of physics-based understanding of the underlying processes. As Co-Director of the Stanford Center for Induced and Triggered Seismicity, my students, postdocs and I conduct multi-disciplinary studies into the causes and consequences of anthropogenic earthquakes in a wide variety of settings. I have also long been committed to earthquake risk reduction, specifically through the transfer of scientific understanding of the hazard to people, businesses, policymakers and government agencies. Before coming to Stanford in 2015, I was a research geophysicist at the U. S. Geological Survey in Menlo Park, California for more than 40 years where I focused on problems of seismicity, seismotectonics, probabilistic earthquake forecasting, and earthquake source processes

  • Anton Ermakov

    Anton Ermakov

    Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Geophysics and of Earth and Planetary Sciences

    Current Research and Scholarly InterestsI am interested in the formation and evolution of the Solar System bodies and the ways we can constrain planetary interiors by geophysical measurements.

  • Meredith Goebel

    Meredith Goebel

    Physical Sci Res Scientist

    BioMeredith Goebel primary interests center on the application of geophysical methods for addressing problems surrounding the evaluation and management of groundwater resources. She currently serves as a Research Scientist at Stanford University, developing methods for integrating new datasets into groundwater models to improve their accuracy and utility, specifically in California’s Central Valley. In addition to this work, she is also involved in number of projects investigating new tools for groundwater recharge site assessment in the Central Valley.

    Meredith completed her PhD in Geophysics at Stanford University, working with electrical and electromagnetic geophysical methods to map and monitor saltwater intrusion at both the lab and field scale. The field scale research for her PhD was conducted along the coast of the Monterey Bay, mapping the distribution of fresh and salt water in the subsurface both onshore and offshore along the bay. Prior to starting at Stanford she got her BA in Geophysics from UC Berkeley, and interned in the seismology group at Lawrence Livermore National Laboratory.

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    Research
    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    Teaching
    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Leo Hollberg

    Leo Hollberg

    Professor (Research) of Physics and of Geophysics

    BioHow can we make optimal use of quantum systems (atoms, lasers, and electronics) to test fundamental physics principles, enable precision measurements of space-time and when feasible, develop useful devices, sensors, and instruments?

    Professor Hollberg’s research objectives include high precision tests of fundamental physics as well as applications of laser physics and technology. This experimental program in laser/atomic physics focuses on high-resolution spectroscopy of laser-cooled and -trapped atoms, non-linear optical coherence effects in atoms, optical frequency combs, optical/microwave atomic clocks, and high sensitivity trace gas detection. Frequently this involves the study of laser noise and methods to circumvent measurement limitations, up to, and beyond, quantum limited optical detection. Technologies and tools utilized include frequency-stabilized lasers and chip-scale atomic devices. Based in the Hansen Experimental Physics Laboratory (HEPL), this research program has strong, synergistic, collaborative connections to the Stanford Center on Position Navigation and Time (SCPNT). Research directions are inspired by experience that deeper understanding of fundamental science is critical and vital in addressing real-world problems, for example in the environment, energy, and navigation. Amazing new technologies and devices enable experiments that test fundamental principles with high precision and sometimes lead to the development of better instruments and sensors. Ultrasensitive optical detection of atoms, monitoring of trace gases, isotopes, and chemicals can impact many fields. Results from well-designed experiments teach us about the “realities” of nature, guide and inform, occasionally produce new discoveries, frequently surprise, and almost always generate new questions and perspectives.

  • Seogi Kang

    Seogi Kang

    Physical Sci Res Scientist

    Current Research and Scholarly InterestsTo construct basis of groundwater sustainability plan in California, we develop an effective workflow that can map 3D hydrogeology of the subsurface by using airborne electromagnetic data that can cover large area fast.

  • Zerina Kapetanovic

    Zerina Kapetanovic

    Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science and of Geophysics

    BioZerina Kapetanovic is an Assistant Professor in the Department of Electrical Engineering at Stanford University working in the area of low-power wireless communication, sensing, and Internet of Things (IoT) systems. Prior to starting at Stanford, Kapetanovic was a postdoctoral researcher at Microsoft Research in the Networking Research Group and Research for Industry Group.

    Kapetanovic's research has been recognized by the Yang Research Award, the Distinguished Dissertation Award from the University of Washington. She also received the Microsoft Research Distinguished Dissertation Grant and was selected to attend the 2020 UC Berkeley Rising Stars in EECS Workshop. Kapetanovic completed her PhD in Electrical Engineering from the University of Washington in 2022.

  • Simon Klemperer

    Simon Klemperer

    Professor of Geophysics and, by courtesy, of Earth and Planetary Sciences

    Current Research and Scholarly InterestsI study the growth, tectonic evolution, and deformation of the continents. My research group undertakes field experiments in exemplary areas such as, currently, the Tibet plateau (formed by collision between Indian and Asia); the actively extending Basin-&-Range province of western North America (the Ruby Range Metamorphic Core Complex, NV, and the leaky transform beneath the Salton Trough, CA). We use active and passive seismic methods, electromagnetic recording, and all other available data!

  • Alexandra Konings

    Alexandra Konings

    Associate Professor of Earth System Science, Senior Fellow at the Woods Institute for the Environment and, by courtesy, of Geophysics

    BioAlexandra Konings leads the Remote Sensing Ecohydrology group, which studies interactions between the global carbon and water cycles. That is, her research studies how changes in hydrological conditions change ecosystems, and how this in turn feeds back to weather and climate. These interactions include studies of transpiration and root water uptake, photosynthesis, mortality, and fire processes, among others. To address these topics, the groups primarily uses the tools of model development and remote sensing (satellite) data, especially microwave remote sensing data of vegetation water content. Alex believes that a deep understanding of remote sensing techniques and how they can be used to create environmental datasets enables new opportunities for scientific insight and vice versa.

  • Robert Kovach

    Robert Kovach

    Professor of Geophysics, Emeritus

    Current Research and Scholarly InterestsEarthquake seismology, natural hazards, and ancient earthquakes and archaeology

  • Ching-Yao Lai

    Ching-Yao Lai

    Assistant Professor of Geophysics

    BioMy group attacks fundamental questions in ice-dynamics, geophysics, and fluid dynamics by integrating mathematical and machine-learned models with observational data. We use our findings to address challenges facing the world, such as advancing our scientific knowledge of ice dynamics under climate change. The length scale of the systems we are interested in varies broadly from a few microns to thousands of kilometers, because the governing physical principles are often universal across a range of length and time scales. We use mathematical models, simulations, and machine learning to study the complex interactions between fluids and elasticity and their interfacial dynamics, such as multiphase flows, flows in deformable structures, and cracks. We extend our findings to tackle emerging topics in climate science and geophysics, such as understand the missing physics that governs the flow of ice sheets in a warming climate. We welcome collaborations across disciplinary lines, from geophysics, engineering, physics, applied math to computer science, since we believe combining expertise and methodologies across fields is crucial for new discoveries.

  • Gerald Mavko

    Gerald Mavko

    Professor (Research) of Geophysics, Emeritus

    Current Research and Scholarly InterestsResearch
    I work to discover and understand the relationship between geophysical measurements and the rock and fluid properties that they sample in the Earth. My students and I have begun to understand the impact of rock type, porosity, pore fluids, temperature, and stress on seismic wave propagation and electromagnetic response. We are also working to quantify the links between geophysical measurements and the sedimentary and diagenetic processes that determine rock mineralogy and texture. Ultimately, this work allows us to better infer, from geophysical images, the composition and physical conditions at depth.

    Teaching
    I teach courses for graduate and undergraduate students on rock physics--the study of the physical properties of rocks and how they can be detected and mapped using seismic and electrical methods. This includes theory, laboratory measurements, and field data analysis. I also lead seminars in which students present and critique their ongoing research in rock physics.

    Professional Activities
    Associate chair, Department of Geophysics (2006-2008); distinguished lecturer, Society of Exploration Geophysicists (2006); honorary membership, Society of Exploration Geophysicists (2001); nominated for Reginald Fessenden Award, Society of Exploration Geophysicists (2000); School of Earth Sciences Excellence in Teaching Award (2000)

  • Tapan Mukerji

    Tapan Mukerji

    Professor (Research) of Energy Science Engineering, of Earth and Planetary Sciences and of Geophysics

    Current Research and Scholarly InterestsMy students and I use theoretical, computational, and statistical models, to discover and understand fundamental relations between geophysical data and subsurface properties, to quantify uncertainty in our geomodels, and to address value of information for decision making under uncertainty.

  • Karissa Pepin

    Karissa Pepin

    Physical Sci Res Scientist

    Current Research and Scholarly InterestsKarissa explores the use of interferometric synthetic aperture radar (InSAR), a remote sensing tool that measures mm-scale surface deformation at a resolution of 5-20 m, to study the subsurface response to fluid extraction and injection at wells, including induced seismicity, aquifer compaction, and changes in fluid flow. She also studies the InSAR signal with the goal of generating accurate time series.

  • Dustin Schroeder

    Dustin Schroeder

    Associate Professor of Geophysics, of Electrical Engineering and Senior Fellow at the Woods Institute for the Environment

    BioMy research focuses on advancing the scientific and technical foundations of geophysical ice penetrating radar and its use in observing and understanding the interaction of ice and water in the solar system. I am primarily interested in the subglacial and englacial conditions of rapidly changing ice sheets and their contribution to global sea level rise. However, a growing secondary focus of my work is the exploration of icy moons. I am also interested in the development and application of science-optimized geophysical radar systems. I consider myself a radio glaciologist and strive to approach problems from both an earth system science and a radar system engineering perspective. I am actively engaged with the flow of information through each step of the observational science process; from instrument and experiment design, through data processing and analysis, to modeling and inference. This allows me to draw from a multidisciplinary set of tools to test system-scale and process-level hypotheses. For me, this deliberate integration of science and engineering is the most powerful and satisfying way to approach questions in Earth and planetary science.

  • Paul Segall

    Paul Segall

    The Cecil H. and Ida M. Green Professor of Geophysics

    Current Research and Scholarly InterestsResearch
    I study active earthquake and volcanic process through data collection, inversion, and theoretical modeling. Using methods such as precise Global Positioning System (GPS) positioning and Interferometric Synthetic Aperture Radar (InSAR) we are able to measure deformation in space and time and invert these data for the geometry of faults and magma chambers, and spatiotemporal variations in fault slip-rate and magma chamber dilation. The accumulation of shear strain in tectonic regions provides a direct measure of earthquake potential. Similarly, magma accumulation in the crust prior to eruptions causes measurable inflation. We use these data to develop and test models of active plate boundaries such as the San Andreas, and the Cascade and Japanese subduction zones, the nucleation of earthquakes, slow slip events, induced seismicity, and the physics of magma migration leading to volcanic eruptions. These physics-based models rely on principles and methodologies from solid and fluid dynamics.

    Teaching
    I teach introductory undergraduate classes in natural hazards and the prediction of volcanic eruptions, as well as graduate level courses on modeling earthquake and volcano deformation and geophysical inverse theory.

    Professional Activities
    James B. Macelwane Medal, American Geophysical Union (1990); fellow, American Geophysical Union (1990); fellow, Geological Society of America (1997); president, Tectonophysics Section, AGU (2002-04); U.S.G.S. Science of Earthquakes Advisory Committee (2002-06); California Earthquake Prediction Evaluation Committee (2003-07); chair, Plate Boundary Observatory Steering Committee (2003-06); N.S.F. Panel, Instruments and Facilities Program (1997-2000); associate editor, Journal of Geophysical Research (1984-87). William Smith Lecturer, Geological Society of London (2011). Charles A. Whitten Medal, American Geophysical Union (2014), National Academy of Sciences (2016)

  • Norman Sleep

    Norman Sleep

    Professor of Geophysics, Emeritus

    Current Research and Scholarly InterestsPhysics of large-scale processes in the Earth

  • Jenny Suckale

    Jenny Suckale

    Associate Professor of Geophysics and, Senior Fellow, by courtesy, at the Woods Institute for the Environment

    BioMy research group studies disasters to reduce the risk they pose. We approach this challenge by developing customized mathematical models that can be tested against observational data and are informed by community needs through a scientific co-production process. We intentionally work on extremes across different natural systems rather than focusing on one specific natural system to identify both commonalities in the physical processes driving extremes and in the best practices for mitigating risk at the community level. Our current research priorities include volcanic eruptions, ice-sheet instability, permafrost disintegration, induced seismicity and flood-risk mitigation. I was recently awarded the Presidential Early Career Awards for Scientists and Engineers, the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their independent research careers and the CAREER award from the National Science Foundation.

  • Sonia Tikoo-Schantz

    Sonia Tikoo-Schantz

    Assistant Professor of Geophysics and, by courtesy, of Earth and Planetary Sciences

    BioI utilize paleomagnetism and fundamental rock magnetism as tools to investigate problems in the planetary sciences. By studying the remanent magnetism recorded within rocks from differentiated planetary bodies, I can learn about core processes that facilitate the generation of dynamo magnetic fields within the Earth, Moon, and planetesimals. Determining the longevities and paleointensities of dynamo fields that initially magnetized rocks also provides insight into the long-term thermal evolution (i.e., effects of secular cooling) of planetary bodies. I also use paleomagnetism to understand impact cratering events, which are the most ubiquitous modifiers of planetary surfaces across the solar system. Impact events produce heat, shock, and sometimes hydrothermal systems that are all capable of resetting magnetization within impactites and target rocks via thermal, shock, and chemical processes. Therefore, I am able to use a combination of paleomagnetic and rock magnetic characterization to investigate shock pressures, temperatures, structural changes, and post-impact chemical alteration experienced by cratered planetary surfaces.

  • Earle Wilson

    Earle Wilson

    Assistant Professor of Earth System Science, by courtesy, of Geophysics, of Oceans and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioEarle Wilson is an assistant professor in the Department of Earth System Science. He is a physical oceanographer who studies ocean dynamics at high latitudes and their far-reaching impacts on the global climate. He is particularly interested in the circulation of the Southern Ocean and its interactions with the cryosphere (i.e., sea ice and marine-terminating glaciers). Dr. Wilson and his group explore these research questions using various tools and methods, ranging from in situ ocean observations and idealized numerical models.

  • Howard Zebker

    Howard Zebker

    Professor of Electrical Engineering and of Geophysics

    Current Research and Scholarly InterestsResearch
    My students and I study the surfaces of Earth and planets using radar remote sensing methods. Our specialization is interferometric radar, or InSAR. InSAR is a technique to measure mm-scale surface deformation at fine resolution over wide areas, and much of our work follows from applying this technique to the study of earthquakes, volcanoes, and human-induced subsidence. We also address global environmental problems by tracking the movement of ice in the polar regions. whose ice mass balance affects sea level rise and global climate. We participate in NASA space missions such as Cassini, in which we now are examining the largest moon of Saturn, Titan, to try and deduce its composition and evolution. Our work includes experimental observation and modeling the measurements to best understand processes affecting the Earth and solar system. We use data acquired by spaceborne satellites and by large, ground-based radar telescopes to support our research.

    Teaching
    I teach courses related to remote sensing methods and applications, and how these methods can be used to study the world around us. At the undergraduate level, these include introductory remote sensing uses of the full electromagnetic spectrum to characterize Earth and planetary surfaces and atmospheres, and methods of digital image processing. I also teach a freshman and sophomore seminar course on natural hazards. At the graduate level, the courses are more specialized, including the math and physics of two-dimensional imaging systems, plus detailed ourses on imaging radar systems for geophysical applications.

    Professional Activities
    InSAR Review Board, NASA Jet Propulsion Laboratory (2006-present); editorial board, IEEE Proceedings (2005-present); NRC Earth Science and Applications from Space Panel on Solid Earth Hazards, Resources, and Dynamics (2005-present); Chair, Western North America InSAR (WInSAR) Consortium (2004-06); organizing committee, NASA/NSF/USGS InSAR working group; International Union of Radioscience (URSI) Board of Experts for Medal Evaluations (2004-05); National Astronomy and Ionospheric Center, Arecibo Observatory, Visiting Committee, (2002-04; chair, 2003-04); NASA Alaska SAR Facility users working group (2000-present); associate editor, IEEE Transactions on Geoscience and Remote Sensing (1998-present); fellow, IEEE (1998)

  • Mark Zoback

    Mark Zoback

    Benjamin M. Page Professor in Earth Sciences, Emeritus

    Current Research and Scholarly InterestsResearch
    I conduct research on in situ stress, fault mechanics, and reservoir geomechanics with an emphasis on shale gas, tight gas and tight oil production, the feasibility of long-term geologic storage of CO2 and the occurrence of induced and triggered earthquakes. I was one of the principal investigators of the SAFOD project in which a scientific research well was successfully drilled through the San Andreas Fault at seismogenic depth. I am the author of a textbook entitled Reservoir Geomechanics published in 2007 by Cambridge University Press, now in its sixth printing. I served on the National Academy of Energy committee investigating the Deepwater Horizon accident and the Secretary of Energy’s committee on shale gas development and environmental protection. I currently serve on a Canadian Council of Academies panel investigating the same topic.

    Teaching
    I teach both undergraduate and graduate students. Reservoir Geomechanics is a graduate class for students in the departments of Geophysics, GES, and ERE, and Tectonophysics, a graduate class for students principally in Geophysics and GES. I co-teach a Freshman class entitled Sustainability and Collapse with Professor Ursula Heise of the English Department. I also help lead two graduate seminars each week and frequently attend and participate in other seminars.

    Professional Activities
    Member, Canadian Council of Academies Committee on Shale Gas Development (2012-2013); Member, Secretary of Energy Committee on Shale Gas Development (2011-2012); Member, NAE Committee Investigating Deepwater Horizon Accident (2010-2011); President, American Rock Mechanics Association (2011-2013); Member of Board of RPSEA (2010-); Chair, Scientific Earthquake Studies Advisory Group of USGS (2007-2011); Advisory Board, Department of Geosciences, University of Arizona (2008-2013); Chair, Stanford Faculty Senate (1999-2000); Chair, Department of Geophysics (1991-97); Chair, Science Advisory Group, ICDP (1999-2006); President, Tectonophysics Section, AGU (1988-89)