Stanford Doerr School of Sustainability
Showing 101-120 of 163 Results
-
Nicholas Melosh
Professor of Materials Science and Engineering
BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.
Research Interests:
Bio-inorganic Interface
Molecular materials at interfaces
Self-Assembly and Nucleation and Growth -
Jennifer Milne
Associate Director for Advanced Research Projects, Precourt Institute for Energy
BioJennifer is a scientist with more than a decade's experience in identifying research needs in energy and shaping the energy research landscape at Stanford. Jennifer leads the Advanced Research Projects at the Precourt Institute for Energy, working with the Director of Precourt and other stakeholders to foster energy research to reduce greenhouse gases and enable the energy transition. In 2023, she joined the technology team of the Sustainability Accelerator, as a key team member tasked with identifying solutions with potential for real-world impact across broad sustainability challenges.
Jennifer is a technical resource for energy related and carbon removal projects across the University and an advisor in the bioenergy area - this foundational experience she gained during her time as an energy analyst with the Global Climate and Energy Project. Here, from 2007 onwards, she learned about energy supply, conversion, and exergy destruction. She led the bioenergy area of the portfolio and contributed more broadly to the development of a fundamental energy research portfolio across all energy areas. Prior to joining Global Climate and Energy Project she was a post-doctoral scholar at the Carnegie Institution for Science, Department of Plant Biology, at Stanford University. Jennifer comes from a biochemistry and plant science background, where she contributed to the discovery of the role of polysaccharides in guard cell wall function and holds a Ph.D. in Biology from the University of York, U.K. and a Bachelor of Science in Biochemistry (First Class Honors) from the University of Stirling, U.K. -
Liang Min
Managing Director Bits & Watts Initiative, Precourt Institute for Energy
Current Role at StanfordManaging Director for the Bits and Watts Initiative, Precourt Institute for Energy
Managing Director for the Net-Zero Alliance, Stanford Doerr School of Sustainability -
Reginald Mitchell
Professor of Mechanical Engineering, Emeritus
BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.
Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.
Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department. -
Kaylee Ann Nguyen
Adm Svcs Admstr 1, Precourt Institute for Energy
Current Role at StanfordProgram Manager, StorageX Initiative
Program Manager, Precourt Pioneering Projects -
Simona Onori
Associate Professor of Energy Science Engineering, Senior Fellow at the Precourt Institute for Energy and Associate Professor, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsModeling, control and optimization of dynamic systems;
Model-based control in advanced propulsion systems;
Energy management control and optimization in HEVs and PHEVs;
Energy storage systems- Li-ion and PbA batteries, Supercapacitors;
Battery aging modeling, state of health estimation and life prediction for control;
Damage degradation modeling in interconnected systems -
Colin Ophus
Associate Professor of Materials Science and Engineering and Center Fellow at the Precourt Institute for Energy
BioColin Ophus is an Associate Professor in the Department of Materials Science and Engineering and a Center Fellow at the Precourt Institute for Energy, Stanford University. He previously worked as a Staff Scientist at the National Center for Electron Microscopy (NCEM), part of the Molecular Foundry, at Lawrence Berkeley Lab. He was awarded a US Department of Energy (DOE) Early Career award in 2018, and the Burton medal from the Microscopy Society of America (MSA) in 2018. His research focuses on experimental methods, reconstruction algorithms, and software codes for simulation, analysis, and instrument design of transmission electron microscopy (TEM) and scanning TEM (STEM).
Colin advocates for open science and his group has developed open-source scientific software including as the Prismatic STEM simulation code and py4DSTEM analysis toolkit. He has taught many workshops around the world on topics ranging from scientific visualization to large scale data analysis. He also is the founder and editor-in-chief for a new journal based on interactive science communication named Elemental Microscopy. -
Leonard Ortolano
UPS Foundation Professor of Civil Engineering in Urban and Regional Planning, Emeritus
BioOrtolano is concerned with environmental and water resources policy and planning. His research stresses environmental policy implementation in developing countries and the role of non-governmental organizations in environmental management. His recent interests center on corporate environmental management.
-
Nilay Papila
Senior Program Manager, Precourt Institute for Energy
BioNilay Papila is an experienced senior program manager, currently working for the Technology Transfer for Defense program at Stanford University. With a strong background in research management, pre- and post-award services, university-industry cooperation, technology transfer, intellectual property, and technology commercialization, Nilay brings a wealth of expertise to her role.
Prior to joining Stanford, Nilay served as the Founding Director of the Technology Transfer Office at Ozyegin University in Istanbul, where she played a pivotal role in fostering innovation and collaboration. She also held positions as the Manager of the Project Development Office at Sabanci University and Associate Director of the Interdisciplinary Program Development Office at the University of Florida. Notably, she served as a national expert on the European Union 7th Framework Program (Marie Curie Actions) and as an expert/evaluator at the Technology Transfer Support Program Group at the Science and Technology Council of Turkey.
Nilay holds a Ph.D. in Aerospace Engineering from the University of Florida, which she earned in 2001, following her completion of B.S. and M.S. degrees in the Aerospace Engineering Department of the METU in Ankara in 1994 and 1997, respectively.
Recognized for her accomplishments, Nilay is a Zonta International Amelia Earhart Fellow (2000), an NCURA (National Council of Research Administration) Global Fellow at Stanford University (2018), and a certified Registered Technology Transfer Professional (RTTP) (2018). These accomplishments highlight her dedication to advancing research and innovation within academic and industry settings. -
Blas L. Pérez Henríquez
Senior Research Scholar
BioBlas L. Pérez Henríquez founded and serves as Director of the California-Global Energy, Water & Infrastructure Innovation Initiative at Stanford University, sponsored by the Bill Lane Center for the American West, focusing on regional low-carbon development opportunities. His research and teaching centers on policy analysis to advance clean innovation through novel technological, business, policy, and social solutions for a new clean economy and a net zero, carbon neutral future. He is a Senior Research Scholar and leads the Stanford | Mexico Clean Economy 2050 program.
He is also directs the Local Governance Summer Institute @ Stanford (LGSI) and the Smart City: Policy, Strategy and Innovation Institute @ Stanford. He has served as a Distinguished Visiting Professor at the School of Engineering and Sciences of the Technological Institute of Superior Studies of Monterrey (ITESM) in Monterrey, Nuevo Leon, Mexico, Senior Visiting Research Fellow at the Grantham Research Institute on Climate and the Environment at the London School of Economics and Political Science (LSE) in London, United Kingdom, and as Guest Professor at the Centre of Economics Research and Teaching (CIDE) in Mexico City, Mexico.
He is the author of “Environmental Commodities and Emissions Trading: Towards a Low Carbon Future,” Resources for the Future – RFF Press/Routledge, Washington, DC (2013) and co-editor of “Carbon Governance, Climate Change and Business Transformation,” Routledge Advances in Climate Change Research, Taylor & Francis Group, Oxford, UK (2015). He also co-edited the book "High-Speed Rail and Sustainability, Decision-making and the political economy of investment," Routlege Explorations in Environmental Studies, Taylor & Francis Group, Oxford, UK (2017). He has written on public-private environmental and energy collaboration in Silicon Valley, water-energy nexus, sustainable transportation and on the use of information technology to support environmental markets and smart policymaking.
Pérez Henríquez is a member of the Distinguished Advisory Group of the Integrity Council for Voluntary Carbon Markets (IC-VCM), derived from the work of the Taskforce for Scaling Voluntary Carbon Markets (TSVCM) where he served as Member of the Board of Advisors. He was a member of the Mexico – United States Entrepreneurship & Innovation Council (MUSEIC), created through the High-Level Economic Dialogue between the presidents of the United States and Mexico. He served as the U.S. Co-chair of the MUSEIC Energy & Sustainability Subcommittee. Pérez Henríquez is also on the International Advisory Board of Public Administration & Policy: An Asia-Pacific Journal. From 2002 to 2015, he directed UC Berkeley’s Center for Environmental Public Policy which he had founded, and was a faculty member of the Goldman School of Public Policy. He has served as an ex-officio member of the Goldman School advisory board (2002 -2012), and as a Quarterly Chair of the Commonwealth Club of California, the nation's oldest and largest public affairs forum.
Pérez Henríquez holds a Masters and a Ph.D. in Public Policy from UC Berkeley, a law degree from the National Autonomous University of Mexico (UNAM), a diploma in Public Policy from the Autonomous Technological Institute of Mexico (ITAM), and a certificate in Compared Environmental US – EU Law & Policy from Indiana University, Leiden & Rotterdam Universities. -
Jim Plummer
John M. Fluke Professor of Electrical Engineering. Emeritus
Current Research and Scholarly InterestsGenerally studies the governing physics and fabrication technology of silicon integrated circuits, including the scaling limits of silicon technology, and the application of silicon technology outside traditional integrated circuits, including power switching devices such as IGBTs. Process simulation tools like SUPREM for simulating fabrication. Recent work has focused on wide bandgap semiconductor materials, particularly SiC and GaN, for power control devices.
-
Sharon Hakeman Poore
Understand Energy Project Manager, Precourt Institute for Energy
Current Role at StanfordProject Manager, Understand Energy
Precourt Institute for Energy -
Eric Pop
Pease-Ye Professor, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics
Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.
-
Balaji Prabhakar
VMware Founders Professor of Computer Science, Professor of Electrical Engineering and, by courtesy, of Operations, Information and Technology at the Graduate School of Business
BioPrabhakar's research focuses on the design, analysis, and implementation of data networks: both wireline and wireless. He has been interested in designing network algorithms, problems in ad hoc wireless networks, and designing incentive mechanisms. He has a long-standing interest in stochastic network theory, information theory, algorithms, and probability theory.
-
Friedrich Prinz
Leonardo Professor, Professor of Mechanical Engineering, of Materials Science and Engineering and Senior Fellow at the Precourt Institute for Energy
BioFritz Prinz is the Leonardo Professor in the School of Engineering at Stanford University, Professor of Materials Science and Engineering, Professor of Mechanical Engineering, and Senior Fellow at the Precourt Institute for Energy. He also serves as the Director of the Nanoscale Prototyping Laboratory and Faculty Co-director of the NPL-Affiliate Program. A solid-state physicist by training, Prinz leads a group of doctoral students, postdoctoral scholars, and visiting scholars who are addressing fundamental issues on energy conversion and storage at the nanoscale. In his Laboratory, a wide range of nano-fabrication technologies are employed to build prototype fuel cells and capacitors with induced topological electronic states. We are testing these concepts and novel material structures through atomic layer deposition, scanning tunneling microscopy, impedance spectroscopy and other technologies. In addition, the Prinz group group uses atomic scale modeling to gain insights into the nature of charge separation and recombination processes. Before coming to Stanford in 1994, he was on the faculty at Carnegie Mellon University. Prinz earned a PhD in Physics at the University of Vienna.
-
Ram Rajagopal
Associate Professor of Civil and Environmental Engineering, of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy
BioRam Rajagopal is an Associate Professor of Civil and Environmental Engineering at Stanford University, where he directs the Stanford Sustainable Systems Lab (S3L), focused on large-scale monitoring, data analytics and stochastic control for infrastructure networks, in particular, power networks. His current research interests in power systems are in the integration of renewables, smart distribution systems, and demand-side data analytics.
He holds a Ph.D. in Electrical Engineering and Computer Sciences and an M.A. in Statistics, both from the University of California Berkeley, Masters in Electrical and Computer Engineering from University of Texas, Austin and Bachelors in Electrical Engineering from the Federal University of Rio de Janeiro. He is a recipient of the NSF CAREER Award, Powell Foundation Fellowship, Berkeley Regents Fellowship and the Makhoul Conjecture Challenge award. He holds more than 30 patents and several best paper awards from his work and has advised or founded various companies in the fields of sensor networks, power systems, and data analytics.