Stanford University


Showing 101-150 of 210 Results

  • Judith Shizuru

    Judith Shizuru

    Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)

    Current Research and Scholarly InterestsTransplantation of defined populations of allogeneic hematopoietic cells. Specifically, the way in which hematopoietic cell grafts alter antigen specific immune responses to allo-, auto- and viral antigens. The cellular and molecular basis of resistance to engraftment of allogeneic hematopoietic stem cells.

  • Linda M. Dairiki Shortliffe

    Linda M. Dairiki Shortliffe

    Stanley McCormick Memorial Professor in the School of Medicine, Emerita

    Current Research and Scholarly InterestsThe timing for intervention in obstruction in the infant and child is poorly understood.Our group has been interested in trying to define the risks that may be involved in obstructive and infectious uropathies and discovering early signs of damage to the urinary tract and kidney. We have explored ways of imaging the urinary tract using nonionizing radiation (US, MRI). We have studied the relationships of sex steroid hormones, pregnancy, reflux, urinary tract infection and urinary tract function.

  • Joseph Shrager

    Joseph Shrager

    Professor of Cardiothoracic Surgery

    Current Research and Scholarly InterestsIn clinical research, Dr. Shrager studies outcomes in a variety of areas within Thoracic Surgery including: parenchyma-sparing operations and minimally invasive resections for lung cancer, transcervical thymectomy for myasthenia gravis, diaphragm plication, and surgical treatment of emphysema.

    Dr. Shrager's lab is focused on the impact of disease states upon the diaphragm. His group published the seminal paper (NEJM) describing diaphragm atrophy assoc'd with mechanical ventilation.

  • Surbhi Sidana, MD

    Surbhi Sidana, MD

    Assistant Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)

    BioDr. Sidana is a hematologist/oncologist who is fellowship trained in advanced hematology with an emphasis on myeloma, amyloidosis, and dysproteinemia disorders. She is an Assistant Professor in the Department of Medicine, Division of Blood and Marrow Transplantation & Cellular Therapy, at Stanford University School of Medicine. She leads the Myeloma Cellular Immunotherapy program at Stanford.

    Her areas of expertise include transplantation and novel cellular immunotherapies such as CAR-T-cell therapy for patients with multiple myeloma. For each patient, Dr. Sidana develops a personalized care plan designed to optimize outcomes and quality of life.

    Dr. Sidana conducts extensive research. Currently, she is conducting clinical trials of CAR-T therapy and bispecific T-cell engagers for treatment of patients with myeloma. She is studying patients’ access to CAR-T cell therapy, the financial burden of the treatment, and its impact on patients’ quality of life and cognitive function.

    Dr Sidana has received a grant from the Stanford Medicine Cancer Institute and NIH funding through the Stanford KL2 program to study adverse events of CAR-T therapy on patients and monitoring of patients undergoing CAR-T therapy using wearable devices.

    In the past, Dr. Sidana received Conquer Cancer Foundation Young Investigator Award from the American Society of Clinical Oncology for her research on the impact of clinical trial participation on patients with multiple myeloma and lymphoma. She has also received grants from the Amyloidosis Foundation and International Waldenstrom’s Macrogloulinemia Foundation to understand AL amyloidosis, a rare disease caused by buildup of an abnormal protein.

    Dr. Sidana has given presentations at regional and national conferences and her work has been published in high-impact journals.

    Dr. Sidana has been recognized for her work with many honors, including an Outstanding Hematology/Oncology Fellow award and Outstanding Research Fellow award from the Mayo Clinic.

    She is a member of the American Society of Hematology, American Society of Clinical Oncology, International Myeloma Society, International Society of Amyloidosis, and American Society of Transplantation & Cellular Therapy. Dr. Sidana is often an invited speaker at patient support groups as well as symposia and workshops for her peers.

  • Arend Sidow

    Arend Sidow

    Professor of Pathology and of Genetics
    On Leave from 04/01/2024 To 02/21/2025

    Current Research and Scholarly InterestsWe have a highly collaborative research program in the evolutionary genomics of cancer. We apply well-established principles of phylogenetics to cancer evolution on the basis of whole genome sequencing and functional genomics data of multiple tumor samples from the same patient. Introductions to our work and the concepts we apply are best found in the Newburger et al paper in Genome Research and the Sidow and Spies review in TIGS.

    More information can be found here: http://www.sidowlab.org

  • Julia Fridman Simard

    Julia Fridman Simard

    Associate Professor of Epidemiology and Population Health, of Medicine (Immunology & Rheumatology) and, by courtesy, of Obstetrics and Gynecology (Maternal Fetal Medicine)

    BioJulia Fridman Simard, ScD, is an Associate Professor of Epidemiology & Population Health, and, by courtesy, of Medicine in Immunology and Rheumatology and Obstetrics and Gynecology in Maternal Fetal Medicine at Stanford University School of Medicine.

    Dr. Simard earned her Masters and Doctorate of Science in Epidemiology degrees at the Harvard School of Public Health. During that time she trained with investigators at the Section of Clinical Sciences, Division of Rheumatology, Immunology, and Allergy at Brigham and Women’s Hospital and the Cardiovascular Epidemiology Research Unit at Beth Israel Deaconess Medical Center. In 2008, Dr. Simard relocated to Sweden to begin a Postdoctoral Fellowship in Clinical Epidemiology at the Karolinska Institutet in Stockholm. She became an Assistant Professor in their Clinical Epidemiology Unit in 2011, and was later honored with a Karolinska Institutet Teaching Award. Leveraging the population-based registers of Sweden, Dr. Simard initiated a national register linkage study to examine the utility of registers in Systemic Lupus Erythematosus (SLE) research and develop an extensive data repository for future epidemiologic investigations.

    While maintaining a close collaboration with the Karolinska Institutet, she joined Stanford’s Epidemiology faculty in 2013. Dr. Simard studies outcomes such as malignancy, stroke, infection, and mortality, in patients with systemic autoimmune rheumatic diseases with a focus on systemic lupus erythematosus. Recently her primary research focus has shifted to the intersection between reproductive epidemiology and rheumatic disease fueled by a K01 career development award from the NIH (NIAMS) to study maternal and fetal outcomes in systemic lupus pregnancy. This led to collaborations with colleagues at Stanford, throughout the US, and abroad, and a series of projects focused on the diagnosis of preeclampsia and associated risks in pregnant women with systemic lupus. Dr. Simard was awarded a Peter Joseph Pappas Research Grant from the Preeclampsia Foundation for her lab's work examining preeclampsia risk in high-risk populations, and a McCormick Faculty Award from Stanford Medicine to take important steps towards disentangling preeclampsia from lupus nephritis. Dr. Simard is leading an international study of hydroxychloroquine in lupus pregnancy leveraging mixed methods in partnership with qualitative researchers, patients, clinicians, and epidemiologists in Sweden, Canada, and in the United States.

    In addition to these issues of misclassification in reproductive rheumatology questions, Dr. Simard's lab is also interested in how misclassification, missed opportunities, and misdiagnosis contribute to disparities in complex conditions such as systemic lupus. In addition to methodologic issues around misclassification and bias and the largely clinical epidemiology focus of her work, Dr. Simard's work examines social determinants of health and health disparities. Dr. Simard was recently awarded an R01 from NIH (NIAID) to study the role of cognitive and unconscious bias in clinical decision making for female-predominant diseases including lupus.

  • Laura Simons

    Laura Simons

    Professor of Anesthesiology, Perioperative and Pain Medicine (Pediatric)

    Current Research and Scholarly InterestsI am a Professor in the Department of Anesthesiology, Perioperative, and Pain Medicine at Stanford University School of Medicine and a clinical psychologist who evaluates and treats youth presenting with chronic pain in the Pediatric Pain Management Clinic (PPMC) at Stanford Children’s Health. My program of research aims to utilize a pain neuroscience psychology approach to gain a mechanistic understanding of cognitive and affective processes in pediatric pain, perform rigorous patient-oriented research that translates targeted assessment into mechanistically informed treatment approaches for optimal clinical care and leverage the ubiquity of digital health to enhance patient access and reach. Central to these goals are projects targeting adolescence and youth adults with chronic pain that encompass defining brain signatures of threat interpretation, evaluating the efficacy of graded exposure (NCT03699007), deriving a biosignature of improvement vs. persistence of pain and disability (NCT04285112), and evaluating the impact of virtual reality on pain rehabilitation (NCT04636177). These studies along with additional work examining the journey of pain care for youth with pain and their parents form a comprehensive research portfolio in the realm of understanding and treating chronic pain in young people. My long-term career goal is to lead a robust research program focusing on alleviating the suffering of youth and emerging adults with chronic pain.

  • Bob Sinclair

    Bob Sinclair

    Charles M. Pigott Professor in the School of Engineering

    BioUsing high-resolution transmission electron microscopy, Sinclair studies microelectronic and magnetic thin film microstructure.

  • Kuldev Singh, MD, MPH

    Kuldev Singh, MD, MPH

    Professor of Ophthalmology

    Current Research and Scholarly InterestsGlaucoma, clinical epidemiology

  • Upinder Singh

    Upinder Singh

    Stanford Medicine Professor of Infectious Disease and Professor of Medicine (Infectious Diseases & Geographic Medicine) and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur lab elucidates the molecular basis of pathogenesis of the protozoan parasite Entamoeba histolytica. We use genetic and genomic approaches to identify novel virulence determinants and to characterize the global epidemiology of the parasite.

  • Sidhartha Sinha

    Sidhartha Sinha

    Assistant Professor of Medicine (Gastroenterology and Hepatology)

    Current Research and Scholarly InterestsThere are two primary and overlapping emphases of my research, both of which are driven and united by needs-based innovation and translational potential:

    (1) Understanding the microenvironment of the inflamed versus normal gut in order to identify better therapeutic targets for people with immune-¬mediated GI disorders. Here, our investigations include understanding the influence and interactions of pharmacologic and dietary interventions on gut microbiome/metabolomic changes and the host immune response. In the context of providing patients with new understanding and solutions for their disease, I have led and advised on the design of both pilot and large clinical trials (including new FDA approved therapies) for anti-inflammatory therapies;

    (2) Applying novel approaches and technologies (including natural language processing, computer vision, and reinforcement learning) to identify and address unmet clinical needs. In this area we have ongoing and published efforts in my lab to validate and develop solutions to pressing clinical needs. We have developed/led new drug delivery technologies with a multidisciplinary team that have shown strong potential in ongoing human IBD clinical trials. My lab has utilized both supervised and unsupervised approaches to analyze social media discourse and unstructured data sets for identifying patient needs that are rarely addressed in clinical settings. We have gained insights into patient perceptions around preventative health interventions, such as health screening and diet, including the dearth of evidence-based dietary recommendations to treat IBD (despite strong patient desire for solutions in this domain).

  • Georgios Skiniotis

    Georgios Skiniotis

    Professor of Molecular and Cellular Physiology, of Structural Biology and of Photon Science

    BioThe Skiniotis laboratory seeks to resolve structural and mechanistic questions underlying biological processes that are central to cellular physiology. Our investigations employ primarily cryo-electron microscopy (cryoEM) and 3D reconstruction techniques complemented by biochemistry, biophysics and simulation methods to obtain a dynamic view into the macromolecular complexes carrying out these processes. The main theme in the lab is the structural biology of cell surface receptors that mediate intracellular signaling and communication. Our current main focus is the exploration of the mechanisms responsible for transmembrane signal instigation in cytokine receptors and G protein coupled receptor (GPCR) complexes.

  • Stephen Skirboll

    Stephen Skirboll

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsMy research focuses on screening strategies to identify and characterize cancer stem cells (CSCs) in human gliomas. We are pursuing this in several ways: 1) a novel colony-forming antibody live cell array to identify distinct CSC surface phenotypes, 2) RNAi screens to identify kinases critical for CSC tumorigenicity, 3) high throughput small molecule and chemical screens to identify compounds that selectively kill or target CSCs, and 4) identifying CSCs using the tumor specific EGFRvIII

  • Jan Skotheim

    Jan Skotheim

    Professor of Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsMy overarching goal is to understand how cell growth triggers cell division. Linking growth to division is important because it allows cells to maintain specific size range to best perform their physiological functions. For example, red blood cells must be small enough to flow through small capillaries, whereas macrophages must be large enough to engulf pathogens. In addition to being important for normal cell and tissue physiology, the link between growth and division is misregulated in cancer.

  • Mark Smith

    Mark Smith

    Head of Medicinal Chemistry

    BioDr. Mark Smith joined Stanford ChEM-H in May 2013 as the Head of the Medicinal Chemistry Knowledge Center. He graduated with a Ph.D. from the laboratory of Prof. Richard Stoodley at the University of Manchester Institute for Science and Technology (UMIST), where his research focused on the application of Lewis acid catalyzed hetero Diels-Alder reactions to the synthesis of novel disaccharide structures. In 2000, Dr. Smith joined the research laboratory of Prof. David Crich at the University of Illinois at Chicago. Here his research focused on the generation of new reagents for the synthesis of beta-mannosides from thioglycosides. From 2002 to 2013, Dr. Smith worked as a medicinal chemist in Roche’s research facilities both in Palo Alto, CA and then Nutley, NJ, where he specialized in antiviral research.

  • Melody Smith, MD, MS

    Melody Smith, MD, MS

    Assistant Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)

    BioDr. Smith is a board-certified, fellowship-trained medical oncologist and hematologist. She is an assistant professor in the Department of Medicine in the Division of Blood & Marrow Transplantation and Cellular Therapy.

    She is also a physician-scientist who conducts extensive research. As a medical student, she completed a fellowship at the National Institutes of Health (NIH) in the Clinical Research Training (now, the Medical Research Scholars) Program. Subsequently, following her clinical fellowship, she was a post-doctoral researcher at Memorial Sloan Kettering Cancer Center. The research in her lab focuses on investigations of the biology of chimeric antigen receptor (CAR) T cells to improve the efficacy and safety of this therapy (1) by investigating donor (Nature Medicine, 2017) and off-the-shelf CAR T cells in mouse models and (2) by assessing mechanisms for the impact of the intestinal microbiome on CAR T cell response (Nature Medicine, 2022).

    Dr. Smith presents the findings of her research at regional, national, and international conferences. Further, she has co-authored articles on topics within the field of cancer immunology, including cancer immunotherapy, stem cell transplantation, and CAR T cell therapy. Her work has appeared in journals, among others Nature, Nature Immunology, Nature Medicine, Blood, and Transplantation and Cellular Therapy. She serves a peer reviewer for publications in journals, such as NEJM Evidence, Science Advances, Blood, Cancer Cell, and Molecular Therapy. She also has contributed to chapters in books, including Pocket Oncology, Current Concepts and Controversies in Hematopoietic Cell Transplantation, and Advanced Concepts in Human Immunology: Prospects for Disease Control.

    She has earned numerous honors; the American Society of Hematology (ASH), the Society for Immunotherapy of Cancer, the European Society for Blood and Marrow Transplantation, and several other professional organizations have recognized her achievements as a clinician, researcher, and scholar.

    Dr. Smith is a member of the ASH Committee on Emerging Gene and Cell Therapies and the ASH Committee on Diversity, Equity & Inclusion. Additionally, she serves on committees within the institution and professional organizations focused on promoting diversity among hematology and cell therapy specialists.

  • Robert Lane Smith

    Robert Lane Smith

    Professor (Research) of Orthopedic Surgery, Emeritus

    Current Research and Scholarly InterestsOur group is interested in the molecular and cell biology underlying bone and cartilage metabolism in health and disease. Normal daily activities are linked to the ability of the articular cartilage to withstand normal joint forces that may reach 5-7 times body weight and bone homeostasis depends on daily mechanical loading histories.

  • Stephen J Smith

    Stephen J Smith

    Professor of Molecular and Cellular Physiology, Emeritus

    Current Research and Scholarly InterestsStephen Smith remains active in the computational microscopy field and is also currently using data science tools to explore new transcriptomic perspectives on signaling by neuropeptides and other neuromodulators in brains of diverse animal species. These exploration have unearthed evidence for a previous unrecognized ubiquity of local neuropeptide signaling and possible critical involvement of such signaling in memory engram formation.

  • Matthew Smuck, MD

    Matthew Smuck, MD

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsI direct the Wearable Health Lab at Stanford, investigating medical applications of mobile technology to improve musculoskeletal and neurologic disease detection, treatment and prevention.

  • Michael Snyder, Ph.D.

    Michael Snyder, Ph.D.

    Stanford W. Ascherman Professor of Genetics

    Current Research and Scholarly InterestsOur laboratory use different omics approaches to study a) regulatory networks, b) intra- and inter-species variation which differs primarily at the level of regulatory information c) human health and disease. For the later we have established integrated Personal Omics Profiling (iPOP), an analysis that combines longitudinal analyses of genomic, transcriptomic, proteomic, metabolomic, DNA methylation, microbiome and autoantibody profiles to monitor healthy and disease states

  • Samuel So, MD

    Samuel So, MD

    Lui Hac Minh Professor in the School of Medicine

    Current Research and Scholarly InterestsThrough a 4 pronged comprehensive program: translational and clinical research, early detection and treatment, promoting education, awareness and immunization and building partnership, we are working towards the development of new strategies that will lead to the elimination of hepatitis B worldwide and reduce the threat and incidence of liver cancer. Current research efforts focus on evaluating potential new diagnostic and treatment markers and novel targeted therapy for primary liver cancer.

  • Yuen So, MD, PhD

    Yuen So, MD, PhD

    Professor of Neurology (Adult Neurology)
    On Partial Leave from 02/01/2024 To 08/18/2024

    Current Research and Scholarly InterestsResearch in the diagnosis, pathophysiology and treatment of peripheral neuropathy, myasthenia gravis, motor neuron diseases including ALS and SMA, nerve injuries and muscle diseases. Application of clinical neurophysiological methods to neurological diagnosis. Development of evidence-based medicine pertaining to the practice of neurology.

  • Raymond A. Sobel, M.D.

    Raymond A. Sobel, M.D.

    Professor of Pathology

    Current Research and Scholarly InterestsWe study cellular and molecular mechanisms of immune-mediated injury in CNS tissues that are affected in multiple sclerosis (MS). We study: 1) tissues of mice with EAE using histology and immunohistochemistry, 2) cross-recognition of neurons by antibodies against myelin proteolipid protein epitopes, and a distinct oligodendrogliopathy induced in mice by the non-protein amino acid azetidine (Aze), (which is found in the human diet); Aze-induced abnormalities mimic those in MS patient CNS tissues

  • Hyongsok Tom  Soh

    Hyongsok Tom Soh

    Professor of Radiology (Early Detection), of Electrical Engineering, of Bioengineering and, by courtesy, of Chemical Engineering

    BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.

  • Olav Solgaard

    Olav Solgaard

    Director, Edward L. Ginzton Laboratory and Robert L. and Audrey S. Hancock Professor in the School of Engineering

    BioThe Solgaard group focus on design and fabrication of nano-photonics and micro-optical systems. We combine photonic crystals, optical meta-materials, silicon photonics, and MEMS, to create efficient and reliable systems for communication, sensing, imaging, and optical manipulation.

  • Edward I. Solomon

    Edward I. Solomon

    Monroe E. Spaght Professor of Chemistry and Professor of Photon Science
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsProf. Solomon's work spans physical-inorganic, bioinorganic, and theoretical-inorganic chemistry, focusing on spectroscopic elucidation of the electronic structure of transition metal complexes and its contribution to reactivity. He has advanced our understanding of metal sites involved in electron transfer, copper sites involved in O2 binding, activation and reduction to water, structure/function correlations over non-heme iron enzymes, and correlation of biological to heterogeneous catalysis.

  • David Solow-Cordero

    David Solow-Cordero

    Associate Director, High-Throughput Screening, Innovative Medicines Accelerator (IMA)

    Current Role at StanfordAssociate Director, High-Throughput Screening Knowledge Center, , Sarafan ChEM-H and Innovative Medicine Accelerator (IMA)

    This high-throughput screening (HTS) laboratory allows Stanford researchers and others to discover novel modulators of targets that otherwise would not be practical in industry. The center incorporates instrumentation (purchased with NCRR NIH Instrumentation grant numbers S10RR019513, S10RR026338, S10OD025004, and S10OD026899), databases, compound libraries, and personnel whose previous sole domains were in industry.

    Among our instrumentation are a fully automated Molecular Devices ImageXpress Micro Confocal High-Content fluorescence microplate imager, with live cell, fluidics and phase contrast options, an Echo 655 Acoustic Dispense, a Thermo integrated HTS robotic system, a Caliper Life Sciences SciClone ALH3000 and an Agilent Bravo microplate liquid handler, and the BMG Clariostarplus, Tecan Infinite M1000 and M1000 PRO and Molecular Devices FlexStation II 384 fluorescence, luminescence and absorbance multimode microplate readers.

    We have over 180,000 small molecules for compound screens, 15,000 cDNAs for genomic screens, and whole genome siRNA libraries targeting the human genome (the siARRAY whole human genome siRNA library from Dharmacon, targeting 21,000 human genes) and the mouse genome (Qiagen mouse whole genome siRNA set V1 against 22,124 genes).

    The HTSKC main screening lab is located in ChEM-H W008, the cell-based assay development lab is located in CCSR Room 0133-North Wing, between the Transgenic Mouse Facility, and the Stanford Genomics Facility.

  • Ivan Soltesz

    Ivan Soltesz

    James R. Doty Professor of Neurosurgery and Neurosciences

    BioIvan Soltesz received his doctorate in Budapest and conducted postdoctoral research at universities at Oxford, London, Stanford and Dallas. He established his laboratory at the University of California, Irvine, in 1995. He became full Professor in 2003, and served as department Chair from 2006 to July 2015. He returned to Stanford in 2015 as the James R. Doty Professor of Neurosurgery and Neurosciences at Stanford University School of Medicine. His major research interest is focused on neuronal microcircuits, network oscillations, cannabinoid signaling and the mechanistic bases of circuit dysfunction in epilepsy.
    His laboratory employs a combination of closely integrated experimental and theoretical techniques, including closed-loop in vivo optogenetics, paired patch clamp recordings, in vivo electrophysiological recordings from identified interneurons in awake mice, 2-photon imaging, machine learning-aided 3D video analysis of behavior, video-EEG recordings, behavioral approaches, and large-scale computational modeling methods using supercomputers. He is the author of a book on GABAergic microcircuits (Diversity in the Neuronal Machine, Oxford University Press), and editor of a book on Computational Neuroscience in Epilepsy (Academic Press/Elsevier). He co-founded the first Gordon Research Conference on the Mechanisms of neuronal synchronization and epilepsy, and taught for five years in the Ion Channels Course at Cold Springs Harbor. He has over 30 years of research experience, with over 20 years as a faculty involved in the training of graduate students (total of 16, 6 of them MD/PhDs) and postdoctoral fellows (20), many of whom received fellowship awards, K99 grants, joined prestigious residency programs and became independent faculty.

  • George Somero

    George Somero

    David and Lucile Packard Professor in Marine Science, Emeritus

    Current Research and Scholarly InterestsWe examine two aspects of organism-environment interactions: How does stress from physical (e.g., temperature) and chemical (oxygen levels, pH) factors perturb organisms and how do organisms respond, adaptively, to cope with this stress? We examine evolutionary adaptation and phenotypic acclimatization using a wide variety of marine animals, including Antarctic fishes and invertebrates from intertidal habitats on the coastlines of temperate and tropical seas.

  • Geoffrey Sonn

    Geoffrey Sonn

    Associate Professor of Urology and, by courtesy, of Radiology (Body MRI)

    Current Research and Scholarly InterestsMy interest is in improving prostate cancer diagnosis through MRI and image-targeted prostate biopsy. In collaboration with radiologists at Stanford, we are working to define the optimal role of MRI in prostate cancer. We hope to improve cancer imaging to the point that some men with elevated PSA may safely avoid prostate biopsy. For those who need biopsy, we are evaluating novel MRI-US fusion targeted biopsy, a technique that greatly improves upon the conventional biopsy method.

  • Justin L. Sonnenburg

    Justin L. Sonnenburg

    Alex and Susie Algard Endowed Professor

    Current Research and Scholarly InterestsThe goals of the Sonnenburg Lab research program are to (i) elucidate the basic mechanisms that underlie dynamics within the gut microbiota and (ii) devise and implement strategies to prevent and treat disease in humans via the gut microbiota. We investigate the principles that govern gut microbial community function and interaction with the host using a broad range of experimental approaches including studies of microbiomes in diverse human cohorts.