School of Engineering
Showing 421-440 of 710 Results
-
Paul McIntyre
Rick and Melinda Reed Professor and Professor of Photon Science
BioMcIntyre's group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors. He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals. His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.
-
Beverley J McKeon
Professor of Mechanical Engineering
BioBeverley McKeon is Professor of Mechanical Engineering at Stanford University. Previously she was the Theodore von Karman Professor of Aeronautics at the Graduate Aerospace Laboratories at Caltech (GALCIT) and a former Deputy Chair of the Division of Engineering and Applied Science. She received M.A. and M.Eng. degrees from the University of Cambridge and a Ph.D. in Mechanical and Aerospace Engineering from Princeton University. Her research interests include interdisciplinary approaches to manipulation of boundary layer flows using morphing surfaces, fundamental experimental investigations of wall turbulence at high Reynolds number, the development of resolvent analysis for modeling turbulent flows, and assimilation of experimental data for efficient low-order flow modeling. McKeon was the recipient of a Vannevar Bush Faculty Fellowship from the DoD in 2017, a Presidential Early Career Award (PECASE) in 2009 and an NSF CAREER Award in 2008, and is a Fellow of the APS and AIAA. She currently serves as co-Lead Editor of Phys. Rev. Fluids and on the editorial board of the Annual Review of Fluid Mechanics, and is past Editor-in-Chief of Experimental Thermal and Fluid Science. She is the Past Chair of the US National Committee on Theoretical and Applied Mechanics and the APS representative.
-
Nick McKeown
Kleiner Perkins, Mayfield, Sequoia Capital Professor in the School of Engineering and Professor of Computer Science, Emeritus
BioMcKeown researches techniques to improve the Internet. Most of this work has focused on the architecture, design, analysis, and implementation of high-performance Internet switches and routers. More recently, his interests have broadened to include network architecture, backbone network design, congestion control; and how the Internet might be redesigned if we were to start with a clean slate.
-
Nicholas Melosh
Professor of Materials Science and Engineering
BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.
Research Interests:
Bio-inorganic Interface
Molecular materials at interfaces
Self-Assembly and Nucleation and Growth -
Teresa Meng
Reid Weaver Dennis Professor in Electrical Engineering and Professor of Computer Science, Emerita
BioTeresa H. Meng is the Reid Weaver Dennis Professor of Electrical Engineering, Emerita, at Stanford University. Her research activities in the first 10 years focused on low-power circuit and system design, video signal processing, and wireless communications. In 1998, Prof. Meng took leave from Stanford and founded Atheros Communications, Inc., which developed semiconductor system solutions for wireless network communications products. After returning to Stanford in 2000 to continue her teaching and research, Prof. Meng turned her research interest to applying signal processing and IC design to bio-medical engineering. She collaborated with Prof. Krishna Shenoy on neural signal processing and neural prosthetic systems. She also directed a research group exploring wireless power transfer and implantable bio-medical devices. Prof. Meng retired from Stanford in 2013.
-
Paul Milgrom
Shirley R. and Leonard W. Ely, Jr. Professor in the School of Humanities and Sciences, Professor of Economics, Senior Fellow at SIEPR and Professor, by courtesy, of Economics at the GSB and of Management Science and Engineering
BioPaul Milgrom is the Shirley and Leonard Ely professor of Humanities and Sciences in the Department of Economics at Stanford University and professor, by courtesy, in the Stanford Graduate School of Business and in the Department of Management Sciences and Engineering. Born in Detroit, Michigan on April 20, 1948, he is a member of both the National Academy of Sciences and the American Academy of Arts and Sciences and a winner of the 2008 Nemmers Prize in Economics, the 2012 BBVA Frontiers of Knowledge award, the 2017 CME-MSRI prize for Innovative Quantitative Applications, and the 2018 Carty Award for the Advancement of Science.
Milgrom is known for his work on innovative resource allocation methods, particularly in radio spectrum. He is coinventor of the simultaneous multiple round auction and the combinatorial clock auction. He also led the design team for the FCC's 2017 incentive auction, which reallocated spectrum from television broadcast to mobile broadband.
According to his BBVA Award citation: “Paul Milgrom has made seminal contributions to an unusually wide range of fields of economics including auctions, market design, contracts and incentives, industrial economics, economics of organizations, finance, and game theory.” As counted by Google Scholar, Milgrom’s books and articles have received more than 80,000 citations.
Finally, Milgrom has been a successful adviser of graduate students, winning the 2017 H&S Dean's award for Excellence in Graduate Education. -
David Miller
W.M. Keck Foundation Professor of Electrical Engineering, Emeritus
Current Research and Scholarly InterestsDavid Miller’s research interests include the use of optics in switching, interconnection, communications, computing, and sensing systems, physics and applications of quantum well optics and optoelectronics, and fundamental features and limits for optics and nanophotonics in communications and information processing.
-
Lloyd B. Minor, MD
The Carl and Elizabeth Naumann Dean of the School of Medicine, Vice President for Medical Affairs, Stanford University, Professor of Otolaryngology - Head and Neck Surgery and Professor of Neurobiology and of Bioengineering, by courtesy
Current Research and Scholarly InterestsThrough neurophysiological investigations of eye movements and neuronal pathways, Dr. Minor has identified adaptive mechanisms responsible for compensation to vestibular injury in a model system for studies of motor learning. Following his discovery of superior canal dehiscence, he published a description of the disorder’s clinical manifestations and related its cause to an opening in the bone covering of the superior canal. He subsequently developed a surgical procedure to correct the problem.
-
Eduardo Miranda
Professor of Civil and Environmental Engineering
Current Research and Scholarly InterestsRegional seismic risk assessment, ground motion directionality
-
Azalia Mirhoseini
Assistant Professor of Computer Science
BioAzalia Mirhoseini is an Assistant Professor in the Computer Science Department at Stanford University. Professor Mirhoseini's research interest is in developing capable, reliable, and efficient AI systems for solving high-impact, real-world problems. Her work includes generalized learning-based methods for decision-making problems in systems and chip design, self-improving AI models through interactions with the world, and scalable deep learning optimization. Prior to Stanford, she spent several years in industry AI labs, including Anthropic and Google Brain. At Anthropic, she worked on advancing the capabilities and reliability of large language models. At Google Brain, she co-founded the ML for Systems team, with a focus on automating and optimizing computer systems and chip design. She received her BSc degree in Electrical Engineering from Sharif University of Technology and her PhD in Electrical and Computer Engineering from Rice University. Her work has been recognized through the MIT Technology Review’s 35 Under 35 Award, the Best ECE Thesis Award at Rice University, publications in flagship venues such as Nature, and coverage by various media outlets, including MIT Technology Review, IEEE Spectrum, The Verge, The Times, ZDNet, VentureBeat, and WIRED.
-
Shahab Mirjalili
Physical Science Research Scientist, Mechanical Engineering
Current Research and Scholarly InterestsBroadly, my research lies in the intersection of fluid mechanics, scientific computing, and machine learning. My work aims to develop and use computational methods to provide a predictive understanding of complex flow problems, including those involving multi-physics couplings and multiphase dynamics across a wide range of scales and Reynolds numbers. In this vein, I develop physically consistent models, robust numerical schemes, and high-performance computing (HPC) software that enable high-fidelity simulations of flows involving complex multi-physics effects. These developments build upon my novel work on modeling multiphase flows and my high-performance multiphase, multi-physics software. In addition to simulations, I use asymptotic analyses and machine learning (ML) to construct reduced-order models (ROMs) that can be used for engineering analysis, control, design, and especially optimization. I am interested in a wide range of applications involving impactful problems. In particular, I am passionate about improving the predictive understanding of multiphase flows in:
- Propulsion and energy conversion/storage
- Additive manufacturing processes
- Biophysical systems
- Environmental flows -
William Mitch
Professor of Civil and Environmental Engineering
BioBill Mitch received a B.A. in Anthropology (Archaeology) from Harvard University in 1993. During his studies, he excavated at Mayan sites in Belize and surveyed sites dating from 2,000 B.C. in Louisiana. He switched fields by receiving a M.S. degree in Civil and Environmental Engineering at UC Berkeley. He worked for 3 years in environmental consulting, receiving his P.E. license in Civil Engineering in California. Returning to UC Berkeley in 2000, he received his PhD in Civil and Environmental Engineering in 2003. He moved to Yale as an assistant professor after graduation. His dissertation received the AEESP Outstanding Doctoral Dissertation Award in 2004. At Yale, he serves as the faculty advisor for the Yale Student Chapter of Engineers without Borders. In 2007, he won a NSF CAREER Award. He moved to Stanford University as an associate professor in 2013.
Employing a fundamental understanding of organic chemical reaction pathways, his research explores links between public health, engineering and sustainability. Topics of current interest include:
Public Health and Emerging Carcinogens: Recent changes to the disinfection processes fundamental to drinking and recreational water safety are creating a host of highly toxic byproducts linked to bladder cancer. We seek to understand how these compounds form so we can adjust the disinfection process to prevent their formation.
Global Warming and Oceanography: Oceanic dissolved organic matter is an important global carbon component, and has important impacts on the net flux of CO2 between the ocean and atmosphere. We seek to understand some of the important abiotic chemical reaction pathways responsible for carbon turnover.
Sustainability and Persistent Organic Pollutants (POPs): While PCBs have been banned in the US, we continue to produce a host of structurally similar chemicals. We seem to understand important chemical pathways responsible for POP destruction in the environment, so we can design less persistent and problematic chemicals in the future.
Engineering for Sustainable Wastewater Recycling: The shortage of clean water represents a critical challenge for the next century, and has necessitated the recycling of wastewater. We seek to understand ways of engineer this process in ways to minimize harmful byproduct formation.
Carbon Sequestration: We are evaluating the formation of nitrosamine and nitraminecarcinogens from amine-based carbon capture, as well as techniques to destroy any of these byproducts that form. -
John Mitchell
Mary and Gordon Crary Family Professor in the School of Engineering, and Professor, by courtesy, of Electrical Engineering and of Education
Current Research and Scholarly InterestsProgramming languages, computer security and privacy, blockchain, machine learning, and technology for education
-
Reginald Mitchell
Professor of Mechanical Engineering, Emeritus
BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.
Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.
Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department. -
Paul Mitiguy
Lecturer
BioFrom Milton MA and shaped by La Salettes with Shaker roots, Paul did his undergraduate work at Tufts University and his mechanical engineering graduate work (PhD) at Stanford under Thomas Kane.
As a young adult, Paul worked summers landscaping, farming, logging, and construction, then worked at MIT Lincoln Laboratory, NASA Ames, Knowledge Revolution, and MSC.Software, was a consulting editor for McGraw-Hill (mechanics), and has been a consultant for the software, robotics, biotechnology, energy, automotive, and mechanical/aerospace industries.
He helped develop force/motion software used by more than 12 million people worldwide and translated into 11 spoken languages. These software applications include Interactive Physics, Working Model 2D/3D, MSC.visualNastran 4D (now SimWise), NIH Simbody/OpenSim, and the symbolic manipulators Autolev/MotionGenesis.
Paul currently works on Drake, open-source software developed by TRI (Toyota Research Institute) to simulate robots. In his role as Lead TRI/Stanford Liaison for SAIL (Toyota's Center for AI Research at Stanford), he facilitates research between TRI and Stanford.
At Stanford, Paul greatly enjoys working with students and teaches mechanics (physics/engineering), controls/vibrations, and advanced dynamics & computation/simulation. He has written several books on dynamics, computation, and control (broadly adopted by universities and professionals).
Paul is highly appreciative of support from Stanford alumni Dave Baszucki (Roblox CEO). Paul greatly appreciates having worked with Dave and team in developing internationally acclaimed physics, engineering, and educational software, including Interactive Physics, Working Model, and MSC.visualNastran.
He is very grateful to students, co-instructors (TAs), faculty, and staff.