School of Engineering
Showing 1,701-1,800 of 7,080 Results
-
Chelsea Finn
Assistant Professor of Computer Science and of Electrical Engineering
On Partial Leave from 10/01/2024 To 03/31/2025BioChelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University, and the William George and Ida Mary Hoover Faculty Fellow. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected experience, and meta-learning algorithms that can enable fast learning of new concepts and behaviors. Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.
Website: https://ai.stanford.edu/~cbfinn -
Michael Fischbach
Liu (Liao) Family Professor
Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.
1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.
2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:
Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?
Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?
3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing. -
Martin Fischer
Kumagai Professor in the School of Engineering
BioProfessor Fischer's research goals are to improve the productivity of project teams involved in designing, building, and operating facilities and to enhance the sustainability of the built environment. His work develops the theoretical foundations and applications for virtual design and construction (VDC). VDC methods support the design of a facility and its delivery process and help reduce the costs and maximize the value over its lifecycle. His research has been used by many small and large industrial government organizations around the world.
-
Ian Fisher
Humanities and Sciences Professor, Professor of Applied Physics and, by courtesy, of Materials Science and Engineering
Current Research and Scholarly InterestsOur research focuses on the study of quantum materials with unconventional magnetic & electronic ground states & phase transitions. Emphasis on design and discovery of new materials. Recent focus on use of strain as a probe of, and tuning parameter for, a variety of electronic states. Interests include unconventional superconductivity, quantum phase transitions, nematicity, multipolar order, instabilities of low-dimensional materials and quantum magnetism.
-
Sarah Fletcher
Assistant Professor of Civil and Environmental Engineering and Center Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsThe Fletcher Lab aims to advance water resources management to promote resilient and equitable responses to a changing world.
-
Chris Flink
Adjunct Professor, d.school
BioChris Flink is an Adjunct Professor and a versatile leader with experience spanning top creative, educational and cultural institutions. He's a dynamic executive who consistently marries imagination with strategic rigor, brings the best out of interdisciplinary teams, and fosters inclusive, human-centered organizational cultures. He is the former CEO and Executive Director of the Exploratorium (2016-22), senior partner at IDEO (1997-2016), and Fortune 500 corporate board member. At Stanford, he was reappointed as an Adjunct Professor in 2023 to again support strategic leadership of the "d.school" and contribute to its courses, programs and projects. Chris was a founding faculty member of the d.school (Hasso Plattner Institute of Design) and key part of its early leadership team. He was previously appointed as a Consulting Associate Professor in Engineering (1999-2017), a Lecturer in Marketing at the Graduate School of Business (2011-16), and a faculty Resident Fellow (2013-17). Courses taught include: "Advanced Product Design" (ME 216B), "Human Values in Design" (ME 313 with Professor David Kelley), "Brands, Experience & Social Technology" (MKTG 353), "Designing Empathy-based Organizations" (GSBGEN 555), "Social Brands" and "Building Innovative Brands" (MKTG 541 & 552 with Professor Jennifer Aaker). He served as the faculty Resident Fellow for a vibrant innovation-themed undergraduate dorm of more than 130 upperclass students (each year) as they built community and fueled their creative confidence. Chris has also delivered popular guest lectures at Wharton and Columbia business schools, and presented at TEDx as well as the World Economic Forum in Davos, Switzerland. His adventures with Stanford began as an enthusiastic student, earning his BS in Engineering/Product Design in 1994 and his MS in Management from the Graduate School of Business in 2005.
-
Tim Flint
Ph.D. Student in Mechanical Engineering, admitted Autumn 2017
BioI am a PhD candidate in the Department of Mechanical Engineering at Stanford University working with Professor Parviz Moin . My PhD research is on the receptivity of the flow field around high-speed bodies. I hope to understand how free-stream disturbances excite instabilities that may grow and become relevant to boundary layer transition in high-speed flight.
-
June Flora
Sr. Research Scholar
BioJune A. Flora, PhD, is a senior research scientist at Stanford University’s Human Sciences & Technologies Advanced Research Institute (HSTAR) in the Graduate School of Education, and the Solutions Science Lab in the Stanford School of Medicine. June's research focuses on understanding the drivers of human behavior change and the potential of communication interventions. The research is solution focused on behavior change relevant to health and climate change.
Most recently she is studying the role of energy use feedback delivered through motivationally framed online applications; the potential of children and youth delivered energy reduction interventions to motivate parent behavior change, and the effects of entertainment-education interventions to change behavior.
June earned her Ph.D. from Arizona State University in educational psychology. She has held faculty positions at University of Utah and Stanford University. -
Sean Follmer
Associate Professor of Mechanical Engineering and, by courtesy, of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsHuman Computer Interaction, Haptics, Robotics, Human Centered Design
-
Polly Fordyce
Associate Professor of Bioengineering and of Genetics
Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.
-
Emily Fox
Professor of Statistics and of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.
Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities. -
Curtis Frank
W. M. Keck, Sr. Professor in Engineering, Emeritus
BioThe properties of ultrathin polymer films are often different from their bulk counterparts. We use spin casting, Langmuir-Blodgett deposition, and surface grafting to fabricate ultrathin films in the range of 100 to 1000 Angstroms thick. Macromolecular amphiphiles are examined at the air-water interface by surface pressure, Brewster angle microscopy, and interfacial shear measurements and on solid substrates by atomic force microscopy, FTIR, and ellipsometry. A vapor-deposition-polymerization process has been developed for covalent grafting of poly(amino acids) from solid substrates. FTIR measurements permit study of secondary structures (right and left-handed alpha helices, parallel and anti-parallel beta sheets) as a function of temperature and environment.
A broadly interdisciplinary collaboration has been established with the Department of Ophthalmology in the Stanford School of Medicine. We have designed and synthesized a fully interpenetrating network of two different hydrogel materials that have properties consistent with application as a substitute for the human cornea: high water swellability up to 85%,tensile strength comparable to the cornea, high glucose permeability comparable to the cornea, and sufficient tear strength to permit suturing. We have developed a technique for surface modification with adhesion peptides that allows binding of collagen and subsequent growth of epithelial cells. Broad questions on the relationships among molecular structure, processing protocol, and biomedical device application are being pursued. -
Antony Fraser-Smith
Professor (Research) of Electrical Engineering and of Geophysics, Emeritus
BioFraser-Smith's research focuses on the use of low frequency electromagnetic fields, both as a means of probing (1) the interior of the earth, and (2) the space environment near the earth, as well as for communicating with, and detecting, objects submerged in the sea or buried in the earth, and for detecting changes taking place in the Earth and the near-Earth space environment.
-
Benjamin N. Frey
Ph.D. Student in Applied Physics, admitted Autumn 2022
Masters Student in Electrical Engineering, admitted Spring 2025BioIn May of 2022, I graduated as a Schulze Innovation Scholar from the University of St. Thomas (Saint Paul, MN).
I am interested in developing sensing and imaging technologies that can increase access to basic diagnostic healthcare. -
David Freyberg
Associate Professor of Civil and Environmental Engineering, Emeritus
Current Research and Scholarly InterestsMy students and I study sediment and water balances in aging reservoirs, collaborative governance of transnational fresh waters, the design of centralized and decentralized wastewater collection, treatment, and reuse systems in urban areas, and hydrologic ecosystem services in urban areas and in systems for which sediment production, transport, and deposition have significant consequences.
-
Oliver Fringer
Professor of Civil and Environmental Engineering and of Oceans
BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.
-
Renate Fruchter
Director of PBL Lab
Current Research and Scholarly InterestsCognitive demands on global learners, VR in teamwork, Sustainability, Wellbeing
-
Ian Fu
Ph.D. Student in Aeronautics and Astronautics, admitted Autumn 2024
Current Research and Scholarly InterestsPlanetary Science, Ocean worlds and Icy Satellites, Space Missions, Autonomy
-
Zipeng Fu
Ph.D. Student in Computer Science, admitted Autumn 2022
BioZipeng Fu is a CS PhD student at Stanford AI Lab, advised by Chelsea Finn. His research focuses on deployable robot systems and learning in the unstructured open world. His representative work includes Mobile ALOHA, Robot Parkour Learning, and RMA, receiving CoRL 2023 & 2022 Best System Finalist awards. His research is supported by Stanford Graduate Fellowship as a Pierre and Christine Lamond Fellow. Previously, he was a student researcher at Google DeepMind. He completed his master's at CMU and bachelor’s at UCLA. Homepage: https://zipengfu.github.io/
-
Hajime Fujita
Ph.D. Student in Bioengineering, admitted Autumn 2022
Masters Student in Bioengineering, admitted Spring 2024Current Research and Scholarly InterestsBiosensors
-
Gerald Fuller
Fletcher Jones Professor in the School of Engineering
BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).
The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.
There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films. -
Sydney Fultz-Waters
Ph.D. Student in Materials Science and Engineering, admitted Summer 2024
Masters Student in Materials Science and Engineering, admitted Autumn 2023BioSydney is a Ph.D student in the Materials Science and Engineering department at Stanford University, co-advised by Prof. Shan X. Wang and Prof. Eric Pop. She received her B.S. in Materials Engineering from California Polytechnic State University, San Luis Obispo in 2023. Her research focuses on low dimensional magnetic materials for electronic applications.