School of Engineering
Showing 1-100 of 240 Results
-
Ross Alexander
Ph.D. Student in Aeronautics and Astronautics, admitted Winter 2021
BioRoss is a second-year Ph.D. Candidate in Aeronautics & Astronautics at Stanford University and is a recipient of the Stanford Graduate Fellowship (SGF) in Science & Engineering. He is a researcher in the Stanford Intelligent Systems Lab (SISL), researching principled methods for algorithmic decision making under uncertainty utilizing approaches involving statistical machine learning and artificial intelligence. Ross’s research has led to international collaborations on topics spanning autonomous driving, multidisciplinary design optimization, and COVID-19. Ross has designed and taught several short artificial intelligence courses for middle and high school students and he has also served as a teaching assistant for various engineering, mathematics, and computer science courses at both the undergraduate and graduate levels.
Ross earned his Bachelor of Science in Aerospace Engineering from Texas A&M University in 2019. In his four years at Texas A&M, Ross developed a strong technical background through his work in trajectory modeling & simulation and propulsion system design on the Texas A&M University Sounding Rocketry Team and also through internships at aerospace research & development (R&D) companies. -
Juan Alonso
Vance D. and Arlene C. Coffman Professor
BioProf. Alonso is the founder and director of the Aerospace Design Laboratory (ADL) where he specializes in the development of high-fidelity computational design methodologies to enable the creation of realizable and efficient aerospace systems. Prof. Alonso’s research involves a large number of different manned and unmanned applications including transonic, supersonic, and hypersonic aircraft, helicopters, turbomachinery, and launch and re-entry vehicles. He is the author of over 200 technical publications on the topics of computational aircraft and spacecraft design, multi-disciplinary optimization, fundamental numerical methods, and high-performance parallel computing. Prof. Alonso is keenly interested in the development of an advanced curriculum for the training of future engineers and scientists and has participated actively in course-development activities in both the Aeronautics & Astronautics Department (particularly in the development of coursework for aircraft design, sustainable aviation, and UAS design and operation) and for the Institute for Computational and Mathematical Engineering (ICME) at Stanford University. He was a member of the team that currently holds the world speed record for human powered vehicles over water. A student team led by Prof. Alonso also holds the altitude record for an unmanned electric vehicle under 5 lbs of mass.
-
Manan Arya
Assistant Professor of Aeronautics and Astronautics
Current Research and Scholarly InterestsManan Arya leads the Morphing Space Structures Laboratory. His research is on structures that can adapt their shape to respond to changing requirements. Examples include deployable structures for spacecraft that can stow in constrained volumes for launch and then unfold to larger sizes in space, terrestrial structures with variable geometry, and morphing robots. Key research thrusts include lightweight fiber-reinforced composite materials to enable innovative designs for flexible structures, and the algorithmic generation of the geometry of morphing structures – the arrangement of stiff and compliant elements – to enable novel folding mechanisms.
He has published more than 20 journal and conference papers and has been awarded 5 US patents. Prior to joining Stanford, he was a Technologist at the Advanced Deployable Structures Laboratory at the Jet Propulsion Laboratory, California Institute of Technology, where he developed and tested breakthrough designs for space structures, including deployable reflectarrays, starshades, and solar arrays. -
Juan Blanch
Sr Research Engineer
Current Research and Scholarly InterestsMy research focuses on the design of navigation integrity algorithms for safety critical applications (like air navigation and autonomous driving). I am interested in both the design of practical algorithms that provide the required safety margins, and in the theoretical limits on the performance of the integrity monitoring algorithms.
-
Brian Cantwell
Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering, Emeritus
BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.
-
Fu-Kuo Chang
Professor of Aeronautics and Astronautics
BioProfessor Chang's primary research interest is in the areas of multi-functional materials and intelligent structures with particular emphases on structural health monitoring, intelligent self-sensing diagnostics, and multifunctional energy storage composites for transportation vehicles as well as safety-critical assets and medical devices. His specialties include embedded sensors and stretchable sensor networks with built-in self-diagnostics, integrated diagnostics and prognostics, damage tolerance and failure analysis for composite materials, and advanced multi-physics computational methods for multi-functional structures. Most of his work involves system integration and multi-disciplinary engineering in structural mechanics, electrical engineering, signal processing, and multi-scale fabrication of materials. His recent research topics include: Multifunctional energy storage composites, Integrated health management for aircraft structures, bio-inspired intelligent sensory materials for fly-by-feel autonomous vehicles, active sensing diagnostics for composite structures, self-diagnostics for high-temperature materials, etc.
-
Richard Christensen
Professor (Research) of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus
BioProfessor Christensen's research is concerned with the mechanics of materials. The behavior of polymers and polymeric fiber composites are areas of specialization. Of particular interest is the field of micro-mechanics that focuses on materials' functionality at intermediate-length scales between atomic and the usual macro scale. Applicable techniques involve the methods of homogenization for all types of composite materials. The intended outcomes of his research are useful means of characterizing the yielding, damage accumulation, and failure behavior of modern materials. A related website has been developed to provide critical evaluations for the mathematical failure criteria used with the various classes of engineering materials. Most of these materials types are employed in aerospace structures and products.
-
Matthew Clarke
Ph.D. Student in Aeronautics and Astronautics, admitted Spring 2017
BioMatthew Clarke is a Ph.D. candidate in the Department of Aeronautics and Astronautics. He is a Tau Beta Pi Fellow and holds an M.S. in AA from Stanford and B.S. in Mechanical Engineering from Howard University. His research focuses on aircraft design with an emphasis on the analysis and optimization of vehicles for regional and urban air mobility. His work also encompasses system modeling of novel battery technologies for electric propulsion applications. Outside of his doctoral work, Matthew dedicates his time to addressing issues surrounding underrepresented minority matriculation and retention in STEM fields, serving as both graduate student recruiter for the School of Engineering and a mentor through the Office of the Vice Provost for Graduate Education. Matthew is a former president of the Black Engineering Graduate Student Association, and a member of the American Society of Mechanical Engineers (ASME); the American Institute of Aeronautics and Astronautics (AIAA), and the National Society of Black Engineers (NSBE).
-
Sigrid Close
Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering
BioProf. Close's research involves space weather detection and modeling for improved spacecraft designs, and advanced signal processing and electromagnetic wave interactions with plasma for ground-to-satellite communication systems. These topics fall under the Space Situational Awareness (SSA) umbrella that include environmental remote sensing using satellite systems and ground-based radar. Her current efforts are the MEDUSSA (Meteoroid, Energetics, and Debris Understanding for Space Situational Awareness) program, which uses dust accelerators to understand the effects of hypervelocity particle impacts on spacecraft along with Particle-In-Cell simulations, and using ground-based radars to characterize the space debris and meteoroid population remotely. She also has active programs in hypersonic plasmas associated with re-entry vehicles.
-
Simone D'Amico
Associate Professor of Aeronautics and Astronautics
BioSimone D’Amico is Associate Professor of Aeronautics and Astronautics at Stanford University. He received the B.S. and M.S. degrees from Politecnico di Milano (2003) and the Ph.D. degree from Delft University of Technology (2010). From 2003 to 2014, he was research scientist and team leader at the German Aerospace Center (DLR). There, he gave key contributions to the design, development, and operations of spacecraft formation-flying and rendezvous missions such as GRACE (United States/Germany), TanDEM-X (Germany), PRISMA (Sweden/Germany/France), and PROBA-3 (ESA). From 2014 to 2020, he was Assistant Professor of Aeronautics and Astronautics at Stanford University. He is the Founding director of the Space Rendezvous Laboratory (SLAB), and Satellite Advisor of the Student Space Initiative (SSSI), Stanford’s largest undergraduate organization. He has over 200 scientific publications and 3000 google scholar’s citations, including conference proceedings, peer-reviewed journal articles, and book chapters. D'Amico's research aims at enabling future miniature distributed space systems for unprecedented science and exploration. His efforts lie at the intersection of advanced astrodynamics, GN&C, and space system engineering to meet the tight requirements posed by these novel space architectures. The most recent mission concepts developed by Dr. D'Amico are a miniaturized distributed occulter/telescope (mDOT) system for direct imaging of exozodiacal dust and exoplanets and the Autonomous Nanosatellite Swarming (ANS) mission for characterization of small celestial bodies. D’Amico’s research is supported by NASA, NSF, AFRL, AFOSR, KACST, and Industry. He is Chairman of the NASA's Starshade Science and Technology Working Group (TSWG). He is member of the advisory board of space startup companies and VC edge funds. He is member of the Space-Flight Mechanics Technical Committee of the AAS, Associate Fellow of AIAA, Associate Editor of the AIAA Journal of Guidance, Control, and Dynamics and the IEEE Transactions of Aerospace and Electronic Systems. He is Fellow of the NAE’s US FOE Symposium. Dr. D’Amico was recipient of the Leonardo 500 Award by the Leonardo Da Vinci Society and ISSNAF (2019), the Stanford’s Introductory Seminar Excellence Award (2019 and 2020), the FAI/NAA‘s Group Diploma of Honor (2018), the Exemplary System Engineering Doctoral Dissertation Award by the International Honor Society for Systems Engineering OAA (2016), the DLR’s Sabbatical/Forschungssemester in honor of scientific achievements (2012), the DLR’s Wissenschaft Preis in honor of scientific achievements (2006), and the NASA’s Group Achievement Award for the Gravity Recovery and Climate Experiment, GRACE (2004).
-
Kaitlin Dennison
Ph.D. Student in Aeronautics and Astronautics, admitted Spring 2019
BioKaitlin Dennison earned her B.S. in mechanical engineering from the University of Connecticut in Storrs, CT (2017). She received her M.S. in aeronautics & astronautics from Stanford University in Stanford, CA (2019) where she is currently pursuing her Ph.D. in aeronautics & astronautics.
Kaitlin worked with the Lawrence Livermore National Laboratory on telescope optics to aid the search for exoplanets. She was also a scholar for the Air Force Research Laboratory where she improved the spacecraft tracking algorithms involving telescope imagery. Additionally, she interned for Blue Origin where she progressed LIDAR-based navigation methods. Her dissertation research in the Space Rendezvous Laboratory advances multi-agent optical tracking and structure from motion in spacecraft swarms with limited resources. -
Saman Farhangdoust
Postdoctoral Scholar, Aeronautics and Astronautics
BioDr. Saman Farhangdoust is pursuing the goal of using his interdisciplinary knowledge to advance the Smart City and Space concept and make a lasting impact on society. He enjoys venturing into new disciplines to combine cutting-edge technologies and develop novel solutions to today’s structural safety problems.
As a Postdoctoral Scholar at Stanford University, Saman works on multi-functional materials and smart structures with particular emphases on intelligent self-sensing diagnostics and integrated health management for space and aircraft structures.
Outside of his research at Stanford, Saman is collaborating with MIT Media Lab as a Technical Consultant and also with Boeing Research and Technology as a Research Consultant to advance sensing and structural health monitoring systems.
Saman is considered a talented young researcher who has made valuable multidisciplinary contributions at an international level. These research activities have led to more than 40 publications including journal articles, conference proceedings, a textbook, U.S. Patents, national reports and guidelines to date. -
Charbel Farhat
Vivian Church Hoff Professor of Aircraft Structures, James and Anna Marie Spilker Chair of the Department of Aeronautics and Astronautics and Professor of Mechanical Engineering and of Aeronautics and Astronautics
Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design and analysis of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles (MAVs) with flexible flapping wings and N+3 aircraft with High Aspect Ratio (HAR) wings, layout optimization and additive manufacturing of wing structures, supersonic inflatable aerodynamic decelerators for Mars landing, and the reliable automated carrier landing via model predictive control. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-physics problems, high-order embedded boundary methods, uncertainty quantification, probabilistic machine learning, and efficient projection-based model order reduction as well as other forms of physics-based machine learning for time-critical applications such as design, active control, and digital twins.
-
Grace Gao
Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering
BioGrace Gao is an assistant professor in the Department of Aeronautics and Astronautics at Stanford University. She leads the Navigation and Autonomous Vehicles Laboratory (NAV Lab). Before joining Stanford University, she was faculty at University of Illinois at Urbana-Champaign. She obtained her Ph.D. degree at Stanford University. Her research is on robust and secure perception, localization and navigation with applications to manned and unmanned aerial vehicles, autonomous driving cars, as well as space robotics.
Prof. Gao has won a number of awards, including the NSF CAREER Award, the Institute of Navigation Early Achievement Award and the RTCA William E. Jackson Award. She received the Distinguished Promotion Award from University of Illinois at Urbana-Champaign. She has won Best Paper/Presentation of the Session Awards 14 times at ION GNSS+ conferences. She received the Dean's Award for Excellence in Research from the College of Engineering, University of Illinois. For her teaching, Prof. Gao has been on the List of Teachers Ranked as Excellent by Their Students at University of Illinois multiple times. She won the College of Engineering Everitt Award for Teaching Excellence, the Engineering Council Award for Excellence in Advising, and AIAA Illinois Chapter’s Teacher of the Year. -
Kentaro Hara
Assistant Professor of Aeronautics and Astronautics
BioKen Hara is an Assistant Professor of Aeronautics and Astronautics at Stanford University. He received a Ph.D. in Aerospace Engineering and a Graduate Certificate in Plasma Science and Engineering from the University of Michigan, and B.S. and M.S. in Aeronautics and Astronautics from the University of Tokyo. He was a Visiting Research Physicist at Princeton Plasma Physics Laboratory as a Japan Society for the Promotion of Science Postdoctoral Fellow. Professor Hara’s research interests include electric propulsion, low temperature plasmas, plasma physics (plasma-wall interactions, plasma-wave interactions), data-driven modeling, rarefied gas flows, and computational fluid and plasma dynamics. He is a recipient of the Air Force Young Investigator Program Award, the Department of Energy Early Career Award, and the Office of Naval Research Young Investigator Program Award.
-
Timmy A Hussain
Masters Student in Aeronautics and Astronautics, admitted Autumn 2020
BioTimmy Hussain is a 1st year Master’s student in the Department of Aeronautics and Astronautics. He holds a B.S in Aerospace Engineering from the Massachusetts Institute of Technology. His primary areas of interests are in the guidance, navigation and control of autonomous systems. Timmy believes there is a tremendous amount of impact to be made at the point where academia and industry intersect and hopes to become an entrepreneur in the future.
-
Antony Jameson
Professor (Research) of Aeronautics and Astronautics, Emeritus
BioProfessor Jameson's research focuses on the numerical solution of partial differential equations with applications to subsonic, transonic, and supersonic flow past complex configurations, as well as aerodynamic shape optimization.