School of Humanities and Sciences
Showing 901-1,000 of 2,001 Results
-
Robert Laughlin
Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences
BioProfessor Laughlin is a theorist with interests ranging from hard-core engineering to cosmology. He is an expert in semiconductors (Nobel Prize 1998) and has also worked on plasma and nuclear physics issues related to fusion and nuclear-pumped X-ray lasers. His technical work at the moment focuses on “correlated-electron” phenomenology – working backward from experimental properties of materials to infer the presence (or not) of new kinds of quantum self-organization. He recently proposed that all Mott insulators – including the notorious doped ones that exhibit high-temperature superconductivity – are plagued by a new kind of subsidiary order called “orbital antiferromagnetism” that is difficult to detect directly. He is also the author of A Different Universe, a lay-accessible book explaining emergent law.
-
Benjamin Lev
Professor of Applied Physics and of Physics
Current Research and Scholarly InterestsLevLab is a joint AMO & CM experimental group that explores the question: Can new classes of states and phases of quantum matter be created far away from equilibrium, and if so, what do we learn? We use our new technique, confocal cavity QED, to both engineer out-of-equilibrium quantum gases and 2D materials and to image and control their new properties.
-
Craig Levin
Professor of Radiology (Molecular Imaging Program at Stanford/Nuclear Medicine) and, by courtesy, of Physics, of Electrical Engineering and of Bioengineering
Current Research and Scholarly InterestsMolecular Imaging Instrumentation
Laboratory
Our research interests involve the development of novel instrumentation and software algorithms for in vivo imaging of cellular and molecular signatures of disease in humans and small laboratory animal subjects. -
Qitong Li
Postdoctoral Scholar, Applied Physics
BioI am an experimental and applied physicist, focusing on extreme light-matter interaction at the nanoscale. I am currently working with Prof. Tony F. Heinz as a postdoctoral researcher in the Department of Applied Physics at Stanford University. Before my current position, I obtained my Ph.D. in Materials Science and Engineering from Stanford University in 2022 under the guidance of Prof. Mark L. Brongersma and my B.Sc. in Physics from Peking University in 2016.
My research concentrates on developing platforms with state-of-the-art tailored (optically resonant) nanostructures to achieve improved control over the photon-electron interaction at the nanoscale. This immediately allows us to create novel photonic and optoelectronic device concepts by coupling free-space lights into a series of well-engineered quantized optical modes and co-engineering electronic and optical components together. We therefore foresee a system-level revolution in industry enabled by nanotechnology. On the other hand, by providing a non-trivial and tunable optical, electrical, and mechanical nano-environment, this platform also fundamentally functions as a versatile tool and offers a new degree of freedom to better probe, study, and control various quantum properties and excitations in solids, especially those enhanced ones in low-dimensional materials. This will ultimately lead us to have a clearer understanding of unconventional phenomena in quantum materials and start to utilize them in a more controllable way. -
Yangjie Li
Postdoctoral Scholar, Chemistry
Current Research and Scholarly Interests1. Fragment correlation mass spectrometry for correlating ion pairs generated from the same fragmentation pathway, achieved by covariance mapping of tandem mass spectra
2. Use mass spectrometry for synthesis and analysis in microdroplets and at solid surfaces, focusing on air/solution, solid/solution, and liquid/liquid interfaces -
Percy Liang
Associate Professor of Computer Science, Senior Fellow at the Stanford Institute for HAI, and Associate Professor, by courtesy, of Statistics
On Partial Leave from 10/01/2024 To 03/31/2025BioPercy Liang is an Associate Professor of Computer Science at Stanford University (B.S. from MIT, 2004; Ph.D. from UC Berkeley, 2011) and the director of the Center for Research on Foundation Models (CRFM). He is currently focused on making foundation models (in particular, language models) more accessible through open-source and understandable through rigorous benchmarking. In the past, he has worked on many topics centered on machine learning and natural language processing, including robustness, interpretability, human interaction, learning theory, grounding, semantics, and reasoning. He is also a strong proponent of reproducibility through the creation of CodaLab Worksheets. His awards include the Presidential Early Career Award for Scientists and Engineers (2019), IJCAI Computers and Thought Award (2016), an NSF CAREER Award (2016), a Sloan Research Fellowship (2015), a Microsoft Research Faculty Fellowship (2014), and paper awards at ACL, EMNLP, ICML, COLT, ISMIR, CHI, UIST, and RSS.
-
Xing Liang
Basic Life Res Scientist
Current Research and Scholarly InterestsMechanism of MT polarity establishment during PVD neuron dendrite outgrowing in C. elegans.
-
Jared Duker Lichtman
Szego Assistant Professor of Mathematics
On Leave from 10/01/2024 To 06/30/2025BioJared Duker Lichtman is a Szegő Assistant Professor in the Department of Mathematics. Jared earned his doctorate in 2023 at the University of Oxford, supervised by Prof. James Maynard.
-
Andrei Linde
Humanities and Sciences Professor, Emeritus
BioWhat is the origin and the global structure of the universe?
For a long time, scientists believed that our universe was born in the big bang, as an expanding ball of fire. This scenario dramatically changed during the last 35 years. Now we think that initially the universe was rapidly inflating, being in an unstable energetic vacuum-like state. It became hot only later, when this vacuum-like state decayed. Quantum fluctuations produced during inflation are responsible for galaxy formation. In some places, these quantum fluctuations are so large that they can produce new rapidly expanding parts of the universe. This process makes the universe immortal and transforms it into a multiverse, a huge fractal consisting of many exponentially large parts with different laws of low-energy physics operating in each of them.
Professor Linde is one of the authors of inflationary theory and of the theory of an eternal inflationary multiverse. His work emphasizes the cosmological implications of string theory and supergravity.
Current areas of focus:
- Construction of realistic models of inflation based on supergravity and string theory
- Investigation of conceptual issues related to the theory of inflationary multiverse -
Scott W Linderman
Assistant Professor of Statistics and, by courtesy, of Computer Science
BioScott is an Assistant Professor of Statistics and, by courtesy, Electrical Engineering and Computer Science at Stanford University. He is also an Institute Scholar in the Wu Tsai Neurosciences Institute and a member of Stanford Bio-X and the Stanford AI Lab. His lab works at the intersection of machine learning and computational neuroscience, developing statistical methods to analyze large scale neural data. Previously, Scott was a postdoctoral fellow with Liam Paninski and David Blei at Columbia University, and he completed his PhD in Computer Science at Harvard University with Ryan Adams and Leslie Valiant. He obtained his undergraduate degree in Electrical and Computer Engineering from Cornell University and spent three years as a software engineer at Microsoft before graduate school.
-
John Lipa
Professor (Research) of Physics, Emeritus
BioJohn Lipa received his PhD at the University of Western Austrailia. He has acted as an assistant professor, senior research associate, and professor at Stanford University. Research interests include testing of various aspects of the renormalization group theory of cooperative phase transitions.
-
Fang Liu
Assistant Professor of Chemistry
Current Research and Scholarly InterestsThe group will develop scalable and controllable processes to produce low dimensional materials and their artificial structures, and unravel their novel static and dynamical properties of broad interest to future photonic, electronic and energy technologies. The topics will include: a) Unraveling time-resolved dynamics in light-induced electronic response of two dimensional (2D) materials artificial structures. b) Fabrication of 1D atomically thin nanoribbon arrays and characterization of the electronic and magnetic properties for the prominent edge states. c) Lightwave manipulation with 2D superlattices. These research projects will provide participating students with broad interdisciplinary training across physics, chemistry, and materials science.
-
Lin Liu
Postdoctoral Scholar, Chemistry
BioI finished my undergraduate study in general chemistry at Shandong Normal University in 2014. Later, I continued to my master’s studies in organic chemistry at Lanzhou University. In 2018, I moved to Baylor University conducting research under the mentorship of Professor John L. Wood. During my graduate studies, I mainly focused on the total syntheses of natural products. In 2024, I joined the Khosla lab and Cui lab as a joint postdoc. Outside the lab, I like cooking, playing basketball, and watching movies