School of Medicine


Showing 101-150 of 525 Results

  • Reinhold Dauskardt

    Reinhold Dauskardt

    Ruth G. and William K. Bowes Professor in the School of Engineering

    BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.

  • Mark M. Davis

    Mark M. Davis

    Director, Stanford Institute for Immunity, Transplantation and Infection and the Burt and Marion Avery Family Professor

    Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.

  • Vinicio de Jesus Perez MD

    Vinicio de Jesus Perez MD

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly InterestsMy work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.

  • Robert DeBusk

    Robert DeBusk

    Professor of Medicine, Emeritus

    Current Research and Scholarly InterestsExperimental and clinical epidemiology of myocardial, infarction; exercise testing; cardiac risk factor management;, cardiac rehabilitation; systems for patient management; ischemic, heart disease; computer-based expert systems.

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Canary Cancer Center) and, by courtesy, of Electrical Engineering
    On Partial Leave from 02/26/2024 To 02/25/2025

    BioUtkan Demirci is a tenured professor in the School of Medicine at Stanford University and serves as the Interim Division Chief and Director of the Canary Center at Stanford for Cancer Early Detection in the Department of Radiology. Prior to Stanford, he was an Associate Professor of Medicine at the Brigham and Women’s Hospital, Harvard Medical School, and a faculty member of the Harvard-MIT Health Sciences and Technology division.

    Professor Demirci received his PhD from Stanford University in Electrical Engineering in 2005 and holds M.S. degrees in Electrical Engineering, and in Management Science and Engineering. He has published over 200 peer-reviewed journal articles, 24 book chapters, 7 edited books, and several hundred abstracts and proceedings, as well as having over 25 patents and disclosures pending or granted. He has mentored and trained hundreds of successful scientists, entrepreneurs and academicians and fostered research and industry collaborations around the world. Dr. Demirci was awarded the NSF CAREER Award, and IEEE EMBS Early Career Award. He is currently a fellow of the the American Institute for Medical and Biological Engineering (AIMBE, 2017), and Distinguished Investigator of the Academy for Radiology and Biomedical Imaging Research and serves as an editorial board member for a number of peer-reviewed journals.

    The BAMM Lab group focuses on developing innovative extracellular vesicle isolation tools, point-of-care technologies and creating microfluidic platforms for early cancer detection with broad applications to multiple diseases including infertility and HIV. Dr. Demirci’s lab has collaborated with over 50 research groups and industry partners around the world. His seminal work in microfluidics has led to the development of innovative FDA-approved platform technologies in medicine and many of his inventions have been industry licensed. He holds several FDA-approved and CE-marked technologies that have been widely used by fertility clinics with assisted reproductive technologies leading to over thousands of live births globally and in the US.

    Dr. Demirci is a serial academic entrepreneur and co-founder of DxNow, Zymot, Levitas Bio, Mercury Biosciences and Koek Biotech and serves as an advisor, consultant and/or board member to some early stage companies and investment groups.

  • Tushar Desai

    Tushar Desai

    Professor of Medicine (Pulmonary, Allergy and Critical Care Medicine)

    Current Research and Scholarly InterestsBasic and translational research in lung stem cell biology, cancer, pulmonary fibrosis, COPD, and acute lung injury/ARDS. Upper airway stem cell CRISPR gene correction followed by autologous stem cell transplantation to treat Cystic fibrosis. Using lung organoids and precision cut lung slice cultures of mouse and human lungs to study molecular regulation of lung stem cells. Using transgenic mice to visualize Wnt protein transmission from niche cell to stem cell in vivo.

  • Gundeep Dhillon, MD, MPH

    Gundeep Dhillon, MD, MPH

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly Interests1. Use of an administrative database (UNOS) to study lung transplant outcomes.
    2. Expression of the plasminogen activator inhibitor (PAI) 1 antibody in peripheral blood after lung transplantation and its association with bronchiolitis obliterans syndrome (chronic rejection).
    3. Impact of airway hypoxia, due to lack of bronchial circulation, on long-term lung transplant outcomes.
    4. CMV specific T-cell immunity in lung transplant recipients and its impact on acute rejection.

  • Jennifer Dionne

    Jennifer Dionne

    Associate Professor of Materials Science and Engineering, Senior Fellow at the Precourt Institute for Energy and Associate Professor, by courtesy, of Radiology

    BioJennifer Dionne is the Senior Associate Vice Provost of Research Platforms/Shared Facilities and an Associate Professor of Materials Science and Engineering and of Radiology (by courtesy) at Stanford. Jen received her Ph.D. in Applied Physics at the California Institute of Technology, advised by Harry Atwater, and B.S. degrees in Physics and Systems & Electrical Engineering from Washington University in St. Louis. Prior to joining Stanford, she served as a postdoctoral researcher in Chemistry at Berkeley, advised by Paul Alivisatos. Jen's research develops nanophotonic methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her work has been recognized with the Alan T. Waterman Award (2019), an NIH Director's New Innovator Award (2019), a Moore Inventor Fellowship (2017), the Materials Research Society Young Investigator Award (2017), Adolph Lomb Medal (2016), Sloan Foundation Fellowship (2015), and the Presidential Early Career Award for Scientists and Engineers (2014), and was featured on Oprah’s list of “50 Things that will make you say ‘Wow!'"

  • Rajiv Doshi, MD

    Rajiv Doshi, MD

    Adjunct Professor and Director, India Biodesign Program, Medicine - Cardiovascular Medicine

    Current Research and Scholarly InterestsDr. Rajiv Doshi serves as an Adjunct Professor of Medicine and as the Director of the India Program at the Byers Center for Biodesign. Dr. Doshi is also the co-Director of the India-based Founders Forum, an executive education training program for India’s leading health technology entrepreneurs. He has also advised the Government of India and various Indian state governments in the development of policies that support Indian health technology innovation.

  • N. Lance Downing

    N. Lance Downing

    Clinical Assistant Professor, Medicine - Biomedical Informatics Research

    BioI am board-certified internal medicine and clinical informatics. I am a primary care physician and teaching hospitalist. I have published work in the New England Journal of Medicine, Health Affairs, Annals of Internal Medicine, and the Journal of the American Medical Informatics Association. My primary focus throughout my career has been to deliver personalized and compassionate care that incorporates the latest advancements in medical science. I aim to help all of my patients maximize their healthspan and age with the best quality of life possible.

  • Anne Dubin

    Anne Dubin

    Endowed Professor of Pediatric Cardiology

    Current Research and Scholarly InterestsArrhythmia management in pediatric heart failure, especially resynchronization therapy in congenital heart disease,Radio frequency catheter ablation of pediatric arrhythmias,

  • Alexander Dunn

    Alexander Dunn

    Associate Professor of Chemical Engineering
    On Partial Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.

  • Gozde Durmus

    Gozde Durmus

    Assistant Professor (Research) of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsDr. Durmus' research focuses on applying micro/nano-technologies to investigate cellular heterogeneity for single-cell analysis and personalized medicine. At Stanford, she is developing platform technologies for sorting and monitoring cells at the single-cell resolution. This magnetic levitation-based technology is used for wide range of applications in medicine, such as, label-free detection of circulating tumor cells (CTCs) from blood; high-throughput drug screening; and rapid detection and monitoring of antibiotic resistance in real-time. During her PhD, she has engineered nanoparticles and nanostructured surfaces to decrease antibiotic-resistant infections.

  • Irmina A. Elliott, MD

    Irmina A. Elliott, MD

    Clinical Assistant Professor, Cardiothoracic Surgery

    BioDr. Elliott is a thoracic surgeon and clinical assistant professor in the Department of Cardiothoracic Surgery at Stanford University School of Medicine. She provides the complete spectrum of surgical care for lung cancer, esophageal cancer, mediastinal tumors, and more through the Stanford Health Care Thoracic Cancer Program. She specializes in minimally invasive, including robotic, approaches to thoracic surgery.

    Dr. Elliott received fellowship training from Stanford University. She completed her residency at UCLA Medical Center.

    Her research has received support from the National Institutes of Health. She has investigated cancer cell response to replication stress, outcomes in patients undergoing hyperthermic intrathoracic chemotherapy (HITHOC) for mesothelioma, complications after esophageal surgery, lymph node involvement in patients with carcinoid tumors of the lung, advanced techniques in robotic surgery, and other topics.

    She has authored articles that have appeared in the Proceedings of the National Academy of Sciences (PNAS), Annals of Thoracic Surgery, JAMA Surgery, and other peer-reviewed publications. She also has contributed to textbooks including the content on social disparities in lung cancer for the book Social Disparities in Thoracic Surgery.

    Dr. Elliott has made presentations to her peers at meetings of the American Association for Thoracic Surgery, Society of Surgical Oncology, Western Thoracic Surgical Association, and other organizations. Presentations focused on surgical treatment of patients with carcinoid tumor of the lung, improvement of mesothelioma patient survival, complications of esophageal surgery, novel targets for cancer treatment, and more.

  • Jesse Engreitz

    Jesse Engreitz

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsRegulatory elements in the human genome harbor thousands of genetic risk variants for common diseases and could reveal targets for therapeutics — if only we could map the complex regulatory wiring that connects 2 million regulatory elements with 21,000 genes in thousands of cell types in the human body.

    We combine experimental and computational genomics, biochemistry, molecular biology, and genetics to assemble regulatory maps of the human genome and uncover biological mechanisms of disease.

  • Daniel Bruce Ennis

    Daniel Bruce Ennis

    Professor of Radiology (Veterans Affairs)

    BioDaniel Ennis {he/him} is a Professor in the Department of Radiology. As an MRI scientist for nearly twenty years, he has worked to develop advanced translational cardiovascular MRI methods for quantitatively assessing structure, function, flow, and remodeling in both adult and pediatric populations. He began his research career as a Ph.D. student in the Department of Biomedical Engineering at Johns Hopkins University during which time he formed an active collaboration with investigators in the Laboratory of Cardiac Energetics at the National Heart, Lung, and Blood Institute (NIH/NHLBI). Thereafter, he joined the Departments of Radiological Sciences and Cardiothoracic Surgery at Stanford University as a postdoc and began to establish an independent research program with an NIH K99/R00 award focused on “Myocardial Structure, Function, and Remodeling in Mitral Regurgitation.” For ten years he led a group of clinicians and scientists at UCLA working to develop and evaluate advanced cardiovascular MRI exams as PI of several NIH funded studies. In 2018 he returned to the Department of Radiology at Stanford University as faculty in the Radiological Sciences Lab to bolster programs in cardiovascular MRI. He is also the Director of Radiology Research for the Veterans Administration Palo Alto Health Care System where he oversees a growing radiology research program.

  • James Fann

    James Fann

    Professor of Cardiothoracic Surgery (Adult Cardiac Surgery) at the Stanford University Medical Center, Emeritus

    Current Research and Scholarly InterestsCardiac surgery education and simulation-based learning, coronary artery bypass surgery, cardiac valve disease

  • Mohsen Fathzadeh

    Mohsen Fathzadeh

    Genomic Scientist, Epidemiology and Population Health

    BioMohsen Fathzadeh, a seasoned Medical Geneticist, has dedicated over 20 years to genomic science. His academic journey began at Yale University, where he completed his Ph.D. thesis under Prof. Arya Mani, focusing on a genetic form of familial Metabolic Syndrome. From 2015 to 2021, he served as a Postdoctoral Fellow at Stanford University, specializing in Cardiovascular Medicine, Psychiatry, and Public Health Sciences. During this tenure, he conducted comprehensive functional genomic analyses under the mentorship of esteemed professors.

    Mohsen's collaborative efforts with Merck & Co., Inc. led to the identification of a gene regulator associated with body fat distribution. His research scope also includes the characterization of genes linked to insulin resistance and obesity. Recently, he explored the (epi)genetic link between newborn body fat distribution and high maternal gestational glucose levels, focusing on mother-child cohorts from diverse and underserved communities.

    His primary goal is to utilize his findings to enhance our understanding of the genes and evolutionary pathways influencing healthspan and age-related diseases, thereby improving patient lives.

    After completing his postdoctoral research in 2021, Mohsen spent two years in the biotech industry, specializing in genetic testing and variant assessment. He is currently affiliated with Stanford's Population Health Center, studying epigenetic disease mechanisms in mother-child cohorts.

    Outside his professional life, Mohsen leads an active lifestyle and enjoys learning about diverse cultures.

  • William Fearon, MD

    William Fearon, MD

    Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsDr. Fearon's general research interest is coronary physiology. In particular, he is investigating invasive methods for evaluating the coronary microcirculation. His research is currently funded by an NIH R01 Award.

  • Jeffrey A. Feinstein, MD, MPH

    Jeffrey A. Feinstein, MD, MPH

    Dunlevie Family Professor of Pulmonary Vascular Disease and Professor, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsResearch interests include (1) computer simulation and modeling of cardiovascular physiology with specific attention paid to congenital heart disease and its treatment, (2) the evaluation and treatment of pulmonary hypertension/pulmonary vascular diseases, and (3) development and testing of medical devices/therapies for the treatment of congenital heart disease and pulmonary vascular diseases.

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • Vikram Fielding-Singh

    Vikram Fielding-Singh

    Clinical Assistant Professor, Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsImproving perioperative care of patients with end stage kidney disease, using biomarkers to aid early diagnosis of acute kidney injury, and evaluating the performance of risk prediction models in perioperative medicine.

  • Andrew Fire

    Andrew Fire

    George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics

    Current Research and Scholarly InterestsWe study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".

  • Michael Fischbein

    Michael Fischbein

    Thelma and Henry Doelger Professor of Cardiovascular Surgery

    Current Research and Scholarly InterestsMolecular and genetic mechanisms of aortic aneurysm/dissection development. Molecular mechanisms of aneurysm formation in Marfan Syndrome. Clinical research interests include thoracic aortic diseases (aneurysms, dissections).

  • Peter Fitzgerald, MD, PhD

    Peter Fitzgerald, MD, PhD

    Professor (Research) of Medicine (Cardiovascular), Emeritus

    BioDr. Peter Fitzgerald is the Director of the Center for Cardiovascular Technology and Director of the Cardiovascular Core Analysis Laboratory (CCAL) at Stanford University Medical School. He is an Interventional Cardiologist and has a PhD in Engineering. He is Professor in both the Departments of Medicine and Engineering (by courtesy) at Stanford. Presently, Dr. Fitzgerald’s laboratory includes 17 postdoctoral fellows and graduate engineering students focusing on state-of-the-art technologies in Cardiovascular Medicine. He has led or participated in over 175 clinical trials, published over 550 manuscripts/chapters, and lectures worldwide. He has trained over 150 post-docs in Engineering and Medicine in the past decade. In addition, he heads the Stanford/Asia MedTech innovation program.
    Dr. Fitzgerald has been principle/founder of twenty-one medical device companies in the San Francisco Bay Area. He has transitioned fourteen of these start-ups to large medical device companies. He serves on several boards of directors, advised dozens of medical device startups as well as multinational healthcare companies in the design and development of new diagnostic and therapeutic devices in the cardiovascular arena. In 2001, Peter was on the founding team of LVP Capital, a venture firm, focused on medical device and biotechnology start-ups in San Francisco. In 2009, he co-founded TriVentures, which is an incubator/venture fund for early stage medical technology in Israel.

  • Dominik Fleischmann

    Dominik Fleischmann

    Professor of Radiology (Cardiovascular Imaging)

    Current Research and Scholarly InterestsNon-invasive Cardiovascular Imaging
    Image Post-processing
    Contrast Medium Dynamics

  • Michael B. Fowler, MBBS, FRCP

    Michael B. Fowler, MBBS, FRCP

    Professor of Medicine (Cardiovascular), Emeritus

    Current Research and Scholarly InterestsAdrenergic nervous system; beta-adrenergic function in, heart failure; drugs in heart failure.

  • Curtis Frank

    Curtis Frank

    W. M. Keck, Sr. Professor in Engineering, Emeritus

    BioThe properties of ultrathin polymer films are often different from their bulk counterparts. We use spin casting, Langmuir-Blodgett deposition, and surface grafting to fabricate ultrathin films in the range of 100 to 1000 Angstroms thick. Macromolecular amphiphiles are examined at the air-water interface by surface pressure, Brewster angle microscopy, and interfacial shear measurements and on solid substrates by atomic force microscopy, FTIR, and ellipsometry. A vapor-deposition-polymerization process has been developed for covalent grafting of poly(amino acids) from solid substrates. FTIR measurements permit study of secondary structures (right and left-handed alpha helices, parallel and anti-parallel beta sheets) as a function of temperature and environment.

    A broadly interdisciplinary collaboration has been established with the Department of Ophthalmology in the Stanford School of Medicine. We have designed and synthesized a fully interpenetrating network of two different hydrogel materials that have properties consistent with application as a substitute for the human cornea: high water swellability up to 85%,tensile strength comparable to the cornea, high glucose permeability comparable to the cornea, and sufficient tear strength to permit suturing. We have developed a technique for surface modification with adhesion peptides that allows binding of collagen and subsequent growth of epithelial cells. Broad questions on the relationships among molecular structure, processing protocol, and biomedical device application are being pursued.

  • Victor Froelicher, MD

    Victor Froelicher, MD

    Professor of Medicine (Cardiovascular) at the Veterans Affairs Palo Alto Health Care System, Emeritus

    Current Research and Scholarly InterestsScreening of athletes for sudden cardiac death, Computerized ECG and clinical data management; exercise Physiology including expired gas analysis; the effect of chronic and acute exercise on the heart; digital recording of biological signals; diagnostic use of exercise testing; development of Expert Medical System software and educational tools.

  • Eri Fukaya

    Eri Fukaya

    Clinical Associate Professor, Surgery - Vascular Surgery
    Clinical Associate Professor, Medicine - Primary Care and Population Health

    BioDr. Fukaya practices Vascular Medicine at the Stanford Vascular Clinics and Advanced Wound Care Center. She received her medical education in Tokyo and completed her medical training both in the US and Japan. She joined Stanford in 2015.

    Vascular Medicine covers a wide range of vascular disorders including chronic venous insufficiency, varicose veins, deep vein thrombosis, post thrombotic syndrome, peripheral artery disease, carotid artery disease, cardiovascular risk evaluation, fibromuscular dysplasia, rare vascular disease, lymphedema, arterial/venous/diabetic ulcers, and wound care.

    Dr. Fukaya has a special interest in venous disease and started the Stanford Vascular and Vein Clinic in 2016.

    Board Certified in Vascular Medicine
    Board Certified in Internal Medicine
    Board Certified in Internal Medicine (Japan)
    Board Certified in Plastic and Reconstructive Surgery (Japan)

  • Gerald Fuller

    Gerald Fuller

    Fletcher Jones Professor in the School of Engineering

    BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).

    The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.

    There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films.

  • Margaret T. Fuller

    Margaret T. Fuller

    Reed-Hodgson Professor of Human Biology, Katharine Dexter McCormick and Stanley McCormick Memorial Professor and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)
    On Leave from 04/01/2024 To 07/19/2024

    Current Research and Scholarly InterestsRegulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.

  • Julieta Gabiola

    Julieta Gabiola

    Clinical Professor, Medicine - Primary Care and Population Health

    Current Research and Scholarly InterestsIn the Philippines where hypertension and prehypertension are prevalent and medication not affordable, we are looking into prevention of hypertension through education and lifestyle modification as a practical alternatives.

  • Stephen J. Galli, MD

    Stephen J. Galli, MD

    Mary Hewitt Loveless, MD, Professor in the School of Medicine and Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsThe goals of Dr. Galli's laboratory are to understand the regulation of mast cell and basophil development and function, and to develop and use genetic approaches to elucidate the roles of these cells in health and disease. We study both the roles of mast cells, basophils, and IgE in normal physiology and host defense, e.g., in responses to parasites and in enhancing resistance to venoms, and also their roles in pathology, e.g., anaphylaxis, food allergy, and asthma, both in mice and humans.

  • Christopher Gardner

    Christopher Gardner

    Rehnborg Farquhar Professor

    Current Research and Scholarly InterestsThe role of nutrition in individual and societal health, with particular interests in: plant-based diets, differential response to low-carb vs. low-fat weight loss diets by insulin resistance status, chronic disease prevention, randomized controlled trials, human nutrition, community based studies, Community Based Participatory Research, sustainable food movement (animal rights and welfare, global warming, human labor practices), stealth health, nutrition policy, nutrition guidelines

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Assistant Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • Daniel Aaron Gerber, MD

    Daniel Aaron Gerber, MD

    Clinical Assistant Professor, Medicine - Cardiovascular Medicine

    BioDr. Gerber is a critical care cardiologist and co-director of Stanford's Cardiac ICU. He has dual subspecialty training in cardiovascular and critical care medicine and additional board certification in echocardiography. He completed his residency in internal medicine, fellowship in cardiovascular medicine, and an additional fellowship in critical care medicine at Stanford University and joined as faculty in 2021 as a Clinical Assistant Professor in the Department of Medicine’s Division of Cardiovascular Medicine.

    Dr. Gerber manages the full spectrum of heart and vascular conditions with a focus on critically ill patients with life-threatening cardiovascular disease. He is active in medical education, teaching introductory echocardiography to Stanford medical students and residents, co-directing the Stanford Critical Care Medicine Critical Care Ultrasound Program, and lecturing nationally on critical care echocardiography and point-of-care ultrasonography at the Society of Critical Care Medicine’s annual congress. Finally, Dr. Gerber’s research interests focus on optimizing cardiac intensive care, including working with the Critical Care Cardiology Trials Network (CCCTN) - a national network of tertiary cardiac ICUs coordinated by the TIMI Study Group - and studying acute mechanical circulatory support techniques to improve patient outcomes and care processes.

  • Rabin Gerrah

    Rabin Gerrah

    Clinical Assistant Professor, Cardiothoracic Surgery

    BioDr. Rabin Gerrah is a cardiothoracic surgeon and specializes in surgical treatment of heart diseases such as ischemic, valvular, structural and congenital heart diseases. He has been trained at Harvard University and Columbia University Hospitals. Dr. Gerrah has been involved in multiple medical research projects and has patented and developed innovative surgical devices and technologies.

  • Olivier Gevaert

    Olivier Gevaert

    Associate Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science

    Current Research and Scholarly InterestsMy lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.

  • Zaniar Ghazizadeh

    Zaniar Ghazizadeh

    Fellow in Graduate Medical Education

    BioZaniar completed his Internal Medicine training at Yale New Haven Hospital/Yale School of Medicine. He received his medical degree from Tehran University of Medical Sciences and spent a few years as a post-doctoral fellow at Weill Cornell Medicine and Brigham and Women’s Hospital before his residency. His research interest lies in the development of in vitro and in vivo platforms for studying heart regeneration and precision medicine. Zaniar’s work is focused on identifying the mechanisms of cardiac arrhythmias using several experimental systems ranging from genetically engineered animal models to human pluripotent stem cell derived cardiac cell types. His ultimate goal as a clinician-scientist is to utilize this framework for drug discovery and identifying new therapeutic strategies that can prevent or reverse specific arrhythmias.