Bio-X
Showing 801-850 of 1,081 Results
-
Jianghong Rao
Professor of Radiology (Molecular Imaging Program at Stanford) and, by courtesy, of Chemistry
Current Research and Scholarly InterestsProbe chemistry and nanotechnology for molecular imaging and diagnostics
-
Jennifer L. Raymond
Berthold and Belle N. Guggenhime Professor
Current Research and Scholarly InterestsWe study the neural mechanisms of learning, using a combination of behavioral, neurophysiological, and computational approaches. The model system we use is a form of cerebellum-dependent learning that regulates eye movements.
-
Christopher Re
Professor of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsAlgorithms, systems, and theory for the next generation of data processing and data analytics systems.
-
Lawrence Recht, MD
Professor of Neurology and Neurological Sciences (Adult Neurology) and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsOur laboratory focuses on two interrelated projects: (1) assessment of glioma development within the framework of the multistage model of carcinogenesis through utilization of the rodent model of ENU neurocarcinogenesis; and (2) assessment of stem cell specification and pluripotency using an embryonic stem cell model system in which neural differentiation is induced.
-
Kristy Red-Horse
Professor of Biology
Current Research and Scholarly InterestsCardiovascular developmental biology
-
David Rehkopf
Associate Professor of Epidemiology and Population Health, of Medicine (Primary Care and Population Health) and, by courtesy, of Sociology, of Pediatrics and of Health Policy
BioI am a social epidemiologist and serve as an Associate Professor in the Department of Epidemiology and Population Health and in the Department of Medicine in the Division of Primary Care and Population Health. I joined the faculty at Stanford School of Medicine in 2011.
I am Director of the Stanford Center for Population Health Sciences. In this position, I am committed to making high-value data resources available to researchers across disciplines in order to better enable them to answer their most pressing clinical and population health questions.
My own research is focused on understanding the health implications of the myriad decisions that are made by corporations and governments every day - decisions that profoundly shape the social and economic worlds in which we live and work. While these changes are often invisible to us on a daily basis, these seemingly minor actions and decisions form structural nudges that can create better or worse health at a population level. My work demonstrates the health implications of corporate and governmental decisions that can give the public and policy makers evidence to support new strategies for promoting health and well-being. In all of his work, I have a focus on the implications of these exposures for health inequalities.
Since often policy and programmatic changes can take decades to influence health, my work also includes more basic research in understanding biological signals that may act as early warning signs of systemic disease, in particular accelerated aging. I examine how social and economic policy changes influence a range of early markers of disease and aging, with a particular recent focus on DNA methylation. I am supported by several grants from the National Institute on Aging and the National Institute on Minority Health and Health Disparities to develop new more sensitive ways to understand the health implications of social and economic policy changes. -
Richard J. Reimer, MD
Associate Professor of Neurology and Neurological Sciences (Adult Neurology)
Current Research and Scholarly InterestsReimer Lab interests
A primary interest of our lab is to understand how nerve cells make and recycle neurotransmitters, the small molecules that they use to communicate with each other. In better defining these processes we hope to achieve our long-term goal of identifying novel sites for treatment of diseases such as epilepsy and Parkinson Disease. In our studies on neurotransmitter metabolism we have focused our efforts on transporters, a functional class of proteins that move neurotransmitters and other small molecules across membranes in cells. Transporters have many characteristics that make them excellent pharmacological targets, and not surprisingly some of the most effective treatments for neuropsychiatric disorders are directed at transporters. We are specifically focusing on two groups of transporters vesicular neurotransmitter transporters that package neurotransmitters into vesicles for release, and glutamine transporters that shuttle glutamine, a precursor for two major neurotransmitters glutamate and GABA, to neurons from glia, the supporting cells that surround them. We are pursuing these goals through molecular and biochemical studies, and, in collaboration with the Huguenard and Prince labs, through physiological and biosensor based imaging studies to better understand how pharmacological targeting of these molecules will influence neurological disorders.
A second interest of our lab is to define mechanism underlying the pathology of lysosomal storage disorders. Lysosomes are membrane bound acidic intracellular organelles filled with hydrolytic enzymes that normally function as recycling centers within cells by breaking down damaged cellular macromolecules. Several degenerative diseases designated as lysosomal storage disorders (LSDs) are associated with the accumulation of material within lysosomes. Tay-Sachs disease, Neimann-Pick disease and Gaucher disease are some of the more common LSDs. For reasons that remain incompletely understood, these diseases often affect the nervous system out of proportion to other organs. As a model for LSDs we are studying the lysosomal free sialic acid storage disorders. These diseases are the result of a defect in transport of sialic acid across lysosomal membranes and are associated with mutations in the gene encoding the sialic acid transporter sialin. We are using molecular, genetic and biochemical approaches to better define the normal function of sialin and to determine how loss of sialin function leads to neurodevelopmental defects and neurodegeneration associated with the lysosomal free sialic acid storage disorders. -
Allan L. Reiss
Howard C. Robbins Professor of Psychiatry and Behavioral Sciences and Professor of Radiology
Current Research and Scholarly InterestsMy laboratory, the Center for Interdisciplinary Brain Sciences Research (CIBSR), focuses on multi-level scientific study of individuals with typical and atypical brain structure and function. Data are obtained from genetic analyses, structural and functional neuroimaging studies, assessment of endocrinological status, neurobehavioral assessment, and analysis of pertinent environmental factors. Our overarching focus is to model how brain disorders arise and to develop disease-specific treatments.
-
David A. Relman
Thomas C. and Joan M. Merigan Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsMy investigative program focuses on human-microbe interactions and human microbial ecology, and primarily concerns the ecology of human indigenous microbial communities; a secondary interest concerns the classification of humans with systemic infectious diseases, based on features of genome-wide gene transcript abundance patterns and pther aspects of the host response.
-
Nathan Reticker-Flynn, PhD
Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsTo metastasize throughout our bodies, tumors subvert and co-opt our immune systems. Our lab seeks to uncover how these processes occur and develops therapies to put a stop to them.
-
Anthony J. Ricci, PhD
Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy of Molecular and Cellular Physiology
Current Research and Scholarly InterestsWe study hearing from biophysical, molecular and signal processing perspectives. One focus is mechanotransduction, where sound is converted into an electrical signal. As a major site for dysfunction, a more detailed understand will provide a means toward intervention. We develop new antibiotics to limit ototoxicity. We investigate drug delivery methods from surgical approaches to slow release systems, including gene therapy tools. We are studying cognitive decline following hearing loss.
-
Tawna L. Roberts, OD, PhD
Associate Professor of Ophthalmology (Pediatric) and, by courtesy, of Pediatrics
Current Research and Scholarly InterestsOur research efforts are funded by grants from the National Eye Institute, Department of Defense, and various foundations to study vision development in infants and young children as well as binocular vision disorders in adolescents and adults with concussions. Our focus is to identify underlying mechanisms that will inform clinical treatment approaches and ultimately leading to the prevention of strabismus, amblyopia, and binocular vision disorders.
-
Thomas Robinson
The Irving Schulman, M.D. Professor of Child Health, Professor of Medicine (Stanford Prevention Research Center) and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsDr. Robinson originated the solution-oriented research paradigm and directs the Stanford Solutions Science Lab. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy.
-
William H. Robinson, MD PhD
James W. Raitt, M.D. Professor
Current Research and Scholarly InterestsOur lab investigates the molecular mechanisms of and develops therapies to treat autoimmune and rheumatic diseases, with a focus on rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and osteoarthritis.
The overriding objectives of our laboratory are:
1. To elucidate the mechanisms underlying autoimmune and rheumatic diseases.
2. To investigate the role of innate immune inflammation in osteoarthritis.
3. To develop novel diagnostics and therapeutics -
Stephen Rock
Professor of Aeronautics and Astronautics, Emeritus
BioProfessor Rock's research interests include the application of advanced control and modeling techniques for robotic and vehicle systems (aerospace and underwater). He directs the Aerospace Robotics Laboratory in which students are involved in experimental programs designed to extend the state-of-the-art in robotic control. Areas of emphasis include planning and navigation techniques (GPS and vision-based) for autonomous vehicles; aerodynamic modeling and control for aggressive flight systems; underwater remotely-operated vehicle control; precision end-point control of manipulators in the presence of flexibility and uncertainty; and cooperative control of multiple manipulators and multiple robots. Professor Rock teaches several courses in dynamics and control.
-
Stanley G. Rockson, MD
Allan and Tina Neill Professor of Lymphatic Research and Medicine
Current Research and Scholarly InterestsMy clinical research includes studies on risk factor modification in atherosclerosis and coronary artery disease; clinical trials involving medical therapies for peripheral arterial insufficiency; coronary angiogenesis; therapy of lymphedema; atherand photodynamic therapy in atherosclerosis.
-
Carolyn Rodriguez
Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)
BioDr. Carolyn Rodriguez is Associate Dean for Academic Affairs, Stanford University School of Medicine and a Consultation-Liaison Psychiatrist at the Palo Alto Veterans Affairs. As the Director of the Stanford OCD Research Lab and Professor in the Department of Psychiatry and Behavioral Sciences, Dr. Rodriguez leads studies investigating the brain basis of severe mental disorders. Her landmark clinical trials pioneer rapid-acting treatments for illnesses including OCD and related disorders. Her NIH-, foundation-, and donor-funded mechanistic and clinical efficacy studies span targeted glutamatergic and opioid pathway pharmacotherapy, noninvasive brain stimulation, psychotherapy and suicide prevention.
Dr. Rodriguez also serves as Deputy Editor of the American Journal of Psychiatry and Deputy Editor of Neuropsychopharmacology. She serves as a member of several scientific councils for non-profit research and advocacy groups including Brain & Behavior Research Foundation, the American Foundation for Suicide Prevention, and the International OCD Foundation. She has won several national awards, including the Presidential Early Career Award for Scientists and Engineers. Carolyn presented her research at the World Economic Forum in Davos and Fortune Brainstorm Health. She is co-author of “Hoarding Disorder: A Comprehensive Clinical Guide,” published August 2022 by APA Publishing.
Carolyn received her B.S. in Computer Science from Harvard University, followed by an M.D. from Harvard Medical School-M.I.T. and a Ph.D. in Neuroscience and Genetics from Harvard Medical School. Born in San Juan, Puerto Rico, she now lives with her husband and three children in Palo Alto. -
Fatima Rodriguez
Associate Professor of Medicine (Cardiovascular Medicine)
BioFatima Rodriguez, MD, MPH is an Associate Professor in Cardiovascular Medicine and (by courtesy) the Stanford Prevention Research Center. Dr. Rodriguez earned her medical degree from Harvard Medical School and her MPH from the Harvard School of Public Health. She then completed internal medicine residency at Brigham and Women’s Hospital and fellowship in cardiovascular medicine at Stanford University. She currently serves as the Section Chief of Preventive Cardiology. Dr. Rodriguez specializes in cardiovascular disease prevention, inherited lipid disorders, and cardiovascular risk assessment in high-risk populations.
Dr. Rodriguez’s research includes a range of topics around racial, ethnic, and gender disparities in cardiovascular disease prevention, developing novel interventions to address disparities, and opportunistic screening of coronary artery disease. -
Patricia Rodriguez Espinosa
Assistant Professor of Epidemiology and Population Health
BioDr. Patricia Rodriguez Espinosa, PhD., MPH, is an Assistant Professor in the Department of Epidemiology and Population Health and also serves as the Associate Director of Research for the Office of Community Engagement at Stanford Medicine. Dr. Rodriguez Espinosa is also the Associate Core Lead for the Outreach, Recruitment, and Engagement Core of the Stanford Alzheimer's Disease Research Center. The ultimate goal of her research is to improve the health of diverse populations - including Latinxs, under-resourced communities, and older adults - through transdisciplinary and community-engaged scholarship. Her research aims to develop novel multi-level interventions and health promotion programs to improve health outcomes (e.g., around aging, multiple chronic conditions, cardiovascular disease) and that include multi-sectoral collaborations. Dr. Rodriguez Espinosa's research has also centered around developing the science of Community-Based Participatory Research, citizen/community science, and other participatory research approaches.
-
Kacper Rogala
Assistant Professor of Structural Biology and of Chemical and Systems Biology
Current Research and Scholarly InterestsOur team is fascinated by how cells make growth decisions — to grow or not to grow. In order to grow, cells require nutrients, and we are unraveling how cells use specialized protein sensors and transporters to sense and traffic nutrients in between various compartments. We use approaches from structural biology, chemical biology, biophysics, biochemistry, and cell biology — to reveal the mechanisms of basic biological processes, and we develop chemical probes that modulate them.
-
Angela Rogers
Associate Professor of Medicine (Pulmonary and Critical Care)
Current Research and Scholarly InterestsWe use genetics and genomics methodologies to identify novel ARDS pathobiology; we hope that this will enable identification of novel biomarkers, phenotypes, and treatments for the disease. We are building a plasma biobank of critically ill patients at Stanford, with a particular focus on metabolic changes in critical illness.
-
Rajat Rohatgi
Professor of Biochemistry and of Medicine (Oncology)
Current Research and Scholarly Intereststhe overall goal of my laboratory is to uncover new regulatory mechanisms in signaling systems, to understand how these mechanisms are damaged in disease states, and to devise new strategies to repair their function.
-
Maria Grazia Roncarolo
George D. Smith Professor of Stem Cell and Regenerative Medicine, Emerita
Current Research and Scholarly InterestsResearch Interests
Immunetolerance: Mechanisms underlying T-cell tolerance, induction of T-cell anergy and regulatory T cells; Immunomodulation: mAbs, proteins and low molecular weight compounds which can modulate T-cell activation; Primary immunodeficiencies: Characterization of molecular and immunological defects; Gene therapy: Gene transduction of hematopoietic cells for gene therapy in primary immunodeficiencies and metabolic diseases; Hematopoiesis: Mechanisms underlying growth and differentiation of hematopoietic stem cells; Transplantation: Immune reconstitution and T-cell tolerance after allogenic stem cell transplantation; Cytokines/Cytokine receptors: Role in regulation of immune and inflammatory responses
Clinical Interests
Primary Immunodeficiencies
Monogenic Autoimmune Disorders
Allogenic Bone Marrow Transplantation
Gene Therapy Clinical Trials
Cell Therapy Clinical Trials
Clinical Trials in Autoimmune Diseases and Organ Transplantation
Clinical Trials in Hemoglobinopathies -
Lisa Goldman Rosas
Assistant Professor (Research) of Epidemiology and Population Health, of Medicine (Primary Care and Population Health) and, by courtesy, of Pediatrics
BioLisa Goldman Rosas, PhD MPH is an Assistant Professor in the Department of Epidemiology and Population Health and the Department of Medicine, Division of Primary Care and Population Health at Stanford School of Medicine. An epidemiologist by training, Dr. Goldman Rosas’ research focuses on addressing disparities in diet-related chronic diseases such as diabetes, heart disease, depression, and cancer especially for those who face food insecurity. This research features rigorous quantitative and qualitative methodologies, participatory qualitative approaches, and shared leadership with patient and community partners. She is passionate about integrating patients, caregivers, community organizations, and other key stakeholders in the research process in order to affect the greatest improvements in health and well-being. As a reflection of this passion, Dr. Goldman Rosas serves as the Faculty Director for the School of Medicine Office of Community Engagement, Co-Director of Community-Engaged Research for the Office of Cancer Health Equity, and Director of the Outreach, Recruitment and Engagement Core for the Alzheimer's Disease Research Center. In these roles, she supports other faculty and patient and community partners to develop sustainable and meaningful partnerships to support transformative research. In addition to research, she teaches at the undergraduate and graduate levels and has a special focus on increasing capacity in community engagement methods.
-
Jessica Rose
Professor of Orthopaedic Surgery
Current Research and Scholarly InterestsDr. Rose's research investigates neuromuscular mechanisms underlying cerebral palsy (CP) and early brain and motor development in preterm children. Research examines gait biomechanics as well as neonatal brain microstructure on DTI, physiology and motor function in CP. Dr. Rose served on NIH Taskforce on Childhood Motor Disorders, AACPDM Research Committee, NIH Steering Committee on CDE for CP neuroimaging diagnostics, BOD of SBMT and serves on the IAACD Research Committee.
-
Sherri Rose
Professor of Health Policy
BioSherri Rose, Ph.D. is a Professor of Health Policy and Director of the Health Policy Data Science Lab at Stanford University. Her research is centered on developing and integrating innovative statistical machine learning approaches to improve human health and health equity. Within health policy, Dr. Rose works on ethical algorithms in health care, risk adjustment, chronic kidney disease, and health program evaluation. She has published interdisciplinary projects across varied outlets, including Biometrics, Journal of the American Statistical Association, Journal of Health Economics, Health Affairs, and New England Journal of Medicine. In 2011, Dr. Rose coauthored the first book on machine learning for causal inference, with a sequel text released in 2018.
Dr. Rose has been honored with an NIH Director’s Pioneer Award, NIH Director's New Innovator Award, the ISPOR Bernie J. O'Brien New Investigator Award, and multiple mid-career awards, including the Gertrude M. Cox Award. She is a Fellow of the American Statistical Association (ASA) and received the Mortimer Spiegelman Award, which recognizes the statistician under age 40 who has made the most significant contributions to public health statistics. In 2024, she received both the ASHEcon Willard G. Manning Memorial Award for Best Research in Health Econometrics and the ASA Outstanding Statistical Application Award. Her research has been featured in The New York Times, USA Today, and The Boston Globe. She was Co-Editor-in-Chief of the journal Biostatistics from 2019-2023. -
Glenn Rosen
Associate Professor of Medicine (Pulmonary and Critical Care Medicine), Emeritus
Current Research and Scholarly InterestsOur laboratory examines apoptotic and cell signaling pathways in cancer and lung disease. We are studying signaling pathways that regulate oxidative stress responses and cancer cell growth. Part of these studies focus on analysis of non-canonical transcription regulatory functions of the TERC and Tert components of telomerase in lung disease and cancer.
-
Michael J Rosen, MD, MSCI
Stanford University Endowed Professor for Pediatric IBD and Celiac Disease
BioDr. Rosen is a pediatric gastroenterologist and physician scientist who has been devoted to advancing inflammatory bowel disease (IBD) research and care for 25 years. He is the inaugural Stanford University Endowed Professor for Pediatric IBD and Celiac Disease. He is also Director of the Stanford Medicine Children’s Health Center for IBD and Celiac Disease, which has achieved nationally leading clinical outcomes under his direction. Dr. Rosen’s research expertise crosses mucosal immunology and epithelial biology and clinical and translational investigation. His NIH-funded laboratory has demonstrated the protective role for type 2 cytokines in chronic intestinal inflammation and advanced intestinal organoids as a model to study IBD. His clinical research has demonstrated how proactive therapeutic drug monitoring can be incorporated into clinical practice to optimize ant-TNF therapy treatment response. Dr. Rosen led the multicenter ARCH Study, which demonstrated the importance of intensified anti-TNF drug dosing in pediatric acute severe ulcerative colitis. Presently, he is co-principal investigator for the Crohn's & Colitis Foundation’s Cohort for Pediatric Translational and Clinical Research in IBD (CAPTURE IBD) which will advance precision medicine for children with IBD.
After graduating from Duke University, Dr. Rosen attended Harvard Medical School, followed by pediatrics residency at Boston Children’s Hospital and Boston Medical Center. He pursued his pediatric gastroenterology fellowship at Vanderbilt University Medical Center, where he received a Master of Science in Clinical Investigation. He started his faculty career at Vanderbilt and then moved to Cincinnati Children’s Hospital and the University of Cincinnati College of Medicine. There he rose to Medical Director of the Schubert Martin IBD Center and Associate Director for Faculty Development in the Gastroenterology division before moving to Stanford in 2021. Dr. Rosen serves on the editorial board for Inflammatory Bowel Diseases and the National Scientific Advisory Committee for the Crohn’s & Colitis Foundation. Outside of work, Dr. Rosen enjoys spending time with his wife and two children at their activities, watching movies, downhill skiing, and getting outside. -
Noah Rosenberg
Stanford Professor of Population Genetics and Society
Current Research and Scholarly InterestsHuman evolutionary genetics, mathematical models in evolution and genetics, mathematical phylogenetics, statistical and computational genetics, theoretical population genetics
-
David Rosenthal
Professor of Pediatrics (Pediatric Cardiology)
Current Research and Scholarly InterestsResearch interests include the study of Heart Failure, Cardiomyopathy and ventricular dysfunction in children, from a clinical perspective. Investigations include clinical trials of medications, cardiac resynchronization, and mechanical circulatory support.
-
Jason B. Ross, MD, PhD
Assistant Professor of Radiation Oncology (Radiation Therapy)
Current Research and Scholarly InterestsMy laboratory studies studying normal, dysfunctional, and malignant stem cells in the context of aging, cancer, and cancer therapies.
-
Stephen J. Roth
Professor of Pediatrics (Cardiology)
Current Research and Scholarly InterestsRandomized Therapeutic Trials in Pediatric Heart Disease, NIH/U01 GrantNo. HL68285 2001-2006.
Heparin and the Reduction of Thrombosis (HART) Study. Pediatric Health Research Fund Award, Stanford Univ Sch of Medicine, 2005-2006.
A Pilot Trial fo B-type Natriuretic Peptide for Promotion of Urine Output in Diuretic-Resistant Infants Following Cardiovascular Surgery.Pediatric Health Research Fund Award, Stanford Univ Sch of Medicine, 2005-2006. -
Theodore Roth
Assistant Professor of Pathology
Current Research and Scholarly InterestsThe Roth Lab develops, applies, and translates scalable genetic manipulation technologies in primary human cells and complex in vivo tissue environments. Working with students, trainees, and staff with backgrounds across bioengineering, genetics, immunology, oncology, and pathology, the lab has developed CRISPR-All, a unified genetic perturbation language able to arbitrarily and combinatorially examine genetic perturbations across perturbation type and scale in primary human cells. Ongoing applications of CRISPR-All in the lab have revealed surprising capacities to synthetically engineer human cells beyond evolved cellular states. These new capacities to perturb human cell’s genetics beyond their evolved functionality drives ongoing work to understand the biology and therapeutic potential of synthetic cell state engineering - in essence learning how to build new human genes tailor made for a specific cell and specific environment to drive previously inaccessible therapeutic cellular functions.
-
Grant M. Rotskoff
Assistant Professor of Chemistry
BioGrant Rotskoff studies the nonequilibrium dynamics of living matter with a particular focus on self-organization from the molecular to the cellular scale. His work involves developing theoretical and computational tools that can probe and predict the properties of physical systems driven away from equilibrium. Recently, he has focused on characterizing and designing physically accurate machine learning techniques for biophysical modeling. Prior to his current position, Grant was a James S. McDonnell Fellow working at the Courant Institute of Mathematical Sciences at New York University. He completed his Ph.D. at the University of California, Berkeley in the Biophysics graduate group supported by an NSF Graduate Research Fellowship. His thesis, which was advised by Phillip Geissler and Gavin Crooks, developed theoretical tools for understanding nonequilibrium control of the small, fluctuating systems, such as those encountered in molecular biophysics. He also worked on coarsegrained models of the hydrophobic effect and self-assembly. Grant received an S.B. in Mathematics from the University of Chicago, where he became interested in biophysics as an undergraduate while working on free energy methods for large-scale molecular dynamics simulations.
Research Summary
My research focuses on theoretical and computational approaches to "mesoscale" biophysics. Many of the cellular phenomena that we consider the hallmarks of living systems occur at the scale of hundreds or thousands of proteins. Processes like the self-assembly of organelle-sized structures, the dynamics of cell division, and the transduction of signals from the environment to the machinery of the cell are not macroscopic phenomena—they are the result of a fluctuating, nonequilibrium dynamics. Experimentally probing mesoscale systems remains extremely difficult, though it is continuing to benefit from advances in cryo-electron microscopy and super-resolution imaging, among many other techniques. Predictive and explanatory models that resolve the essential physics at these intermediate scales have the power to both aid and enrich the understanding we are presently deriving from these experimental developments.
Major parts of my research include:
1. Dynamics of mesoscale biophysical assembly and response.— Biophysical processes involve chemical gradients and time-dependent external signals. These inherently nonequilibrium stimuli drive supermolecular organization within the cell. We develop models of active assembly processes and protein-membrane interactions as a foundation for the broad goal of characterizing the properties of nonequilibrium biomaterials.
2. Machine learning and dimensionality reduction for physical models.— Machine learning techniques are rapidly becoming a central statistical tool in all domains of scientific research. We apply machine learning techniques to sampling problems that arise in computational chemistry and develop approaches for systematically coarse-graining physical models. Recently, we have also been exploring reinforcement learning in the context of nonequilibrium control problems.
3. Methods for nonequilibrium simulation, optimization, and control.— We lack well-established theoretical frameworks for describing nonequilibrium states, even seemingly simple situations in which there are chemical or thermal gradients. Additionally, there are limited tools for predicting the response of nonequilibrium systems to external perturbations, even when the perturbations are small. Both of these problems pose key technical challenges for a theory of active biomaterials. We work on optimal control, nonequilibrium statistical mechanics, and simulation methodology, with a particular interest in developing techniques for importance sampling configurations from nonequilibrium ensembles. -
Daniel Rubin
Professor of Biomedical Data Science and of Radiology (Integrative Biomedical Imaging Informatics at Stanford), Emeritus
Current Research and Scholarly InterestsMy research interest is imaging informatics--ways computers can work with images to leverage their rich information content and to help physicians use images to guide personalized care. Work in our lab thus lies at the intersection of biomedical informatics and imaging science.
-
Mirabela Rusu
Assistant Professor of Radiology (Integrative Biomedical Imaging Informatics) and, by courtesy, of Biomedical Data Science
Current Research and Scholarly InterestsDr. Mirabela Rusu focuses on developing analytic methods for biomedical data integration, with a particular interest in radiology-pathology fusion. Such integrative methods may be applied to create comprehensive multi-scale representations of biomedical processes and pathological conditions, thus enabling their in-depth characterization.
-
Florentine Rutaganira
Assistant Professor of Biochemistry and of Developmental Biology
Current Research and Scholarly InterestsWe use chemical tools to decipher the roles of key signaling networks in choanoflagellates, single-celled organisms that are the closest living relatives of animals. Choanoflagellates produce molecular signals essential for intercellular communication in animals and the presence of these molecules in choanoflagellates suggests that signaling components needed to communicate between cells is evolutionarily ancient. We aim to uncover new understanding of animal development, physiology and disease.
-
Brian Rutt
Professor of Radiology (Radiological Sciences Lab), Emeritus
Current Research and Scholarly InterestsMy research interests center on MRI research, including high-field and high-resolution MRI technology development as well as applications of advanced MRI techniques to studying the brain, cardiovascular system and cancer.
-
Raya Saab
Lindhard Family Professor of Pediatric Cancer Biology
BioOur laboratory focuses on investigating molecular mechanisms of oncogene-induced tumorigenesis and tumor suppressor pathways, and oncogenic signaling in the pediatric solid tumor rhabdomyosarcoma. Our earlier work identified the tumor suppressors p53 and p18Ink4c as inhibitors of Cyclin D1-driven tumorigenesis in a pineoblastoma model, through senescence induction, and highlighted distinct roles for the the RB and p53 pathways in induction and maintenance of oncogene-induced senescence. We also identified CDK2 as a potential target for inducing senescence in premalignant lesions to inhibit tumor progression.
Our current focus is on studying oncogenic signaling and tumor suppression in the childhood tumor rhabdomyosarcoma, to identify key mediators of invasion and metastasis, which is the most common cause of treatment failure clinically. We use preclinical in vitro and in vivo models, including murine and human cell lines, and mouse models of disease.
We have recently uncovered a paracrine role for rhabdomyosarcoma-secreted exosomes in impacting biology of stromal cells. Rhabdomyosarcoma-derived exosomes carry specific miRNA cargo that imparts an invasive and migratory phenotype on normal recipient fibroblasts, and proteomic analysis revealed specific and unique pathways relevant to the two different molecular rhabdomyosarcoma subtypes that are driven by distinct oncogenic pathways. We identified that the driver oncogene in fusion-positive rhabdomyosarcoma, PAX3-FOXO1, modulates exosome cargo to promote invasion, migration, and angiogenic properties, and identified specific microRNA and protein cargo acting as effectors of PAX3-FOXO1 exosome-mediated signaling, including modulation of oxidative stress response and cell survival signaling.
Our ongoing work is focused on interrogating specific paracrine signaling pathways and molecular mechanisms of metastatic disease progression in rhabdomyosarcoma, for potential therapeutic targeting. -
Chiara Sabatti
Professor of Biomedical Data Science and of Statistics
Current Research and Scholarly InterestsStatistical models and reasoning are key to our understanding of the genetic basis of human traits. Modern high-throughput technology presents us with new opportunities and challenges. We develop statistical approaches for high dimensional data in the attempt of improving our understanding of the molecular basis of health related traits.
-
Amin Saberi
Professor of Management Science and Engineering and, by courtesy, of Computer Science
BioAmin Saberi is Professor of Management Science and Engineering at Stanford University. He received his B.Sc. from Sharif University of Technology and his Ph.D. from Georgia Institute of Technology in Computer Science. His research interests include algorithms, design and analysis of social networks, and applications. He is a recipient of the Terman Fellowship, Alfred Sloan Fellowship and several best paper awards.
Amin was the founding CEO and chairman of NovoEd Inc., a social learning environment designed in his research lab and used by universities such as Stanford as well as non-profit and for-profit institutions for offering courses to hundreds of thousands of learners around the world. -
Debra Safer
Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology-Adult)
Current Research and Scholarly InterestsPrimary research interests include the nature and treatment of eating disorders
(particularly bulimia nervosa and binge eating disorder), the development and treatment of obesity, and the development and treatment of problematic eating patterns in patients following bariatric surgery. -
Marc R. Safran, MD
Professor of Orthopaedic Surgery
Current Research and Scholarly InterestsDr. Safrans practice focuses on arthroscopic management of hip problems as well as articular cartilage regeneration, shoulder surgery and athletic shoulder and elbow problems. He is actively involved in research in these areas.
-
Julien Sage
Elaine and John Chambers Professor of Pediatric Cancer and Professor of Genetics
Current Research and Scholarly InterestsWe investigate the mechanisms by which normal cells become tumor cells, and we combine genetics, genomics, and proteomics approaches to investigate the differences between the proliferative response in response to injury and the hyperproliferative phenotype of cancer cells and to identify novel therapeutic targets in cancer cells.
-
Manish Saggar
Associate Professor (Research) of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Science Research)
Current Research and Scholarly InterestsWe are a computational neuropsychiatry lab dedicated to developing computational methods to better understand brain’s overall dynamical organization in healthy and patient populations. We employ algorithms from a wide range of fields, including Applied Mathematics, Econometrics, Machine Learning, Biophysics, and Network Science.
-
Kathleen M. Sakamoto
Shelagh Galligan Professor in the School of Medicine
Current Research and Scholarly InterestsMy research focuses on the molecular pathways that regulate normal and aberrant blood cell development, including acute leukemia and bone marrow failure syndromes. We are also studying novel drugs for treatment of cancer.
-
Michael Salerno
Member, Bio-X
BioDr. Salerno completed his BS in Biological Engineering at Cornell University, and his MD and PhD in Biomedical Engineering at the University of Virginia as part of the Medical Scientist Training Program. He then completed the American Board of Internal Medicine Research Pathway with an Internal Medicine residency at Stanford University, and his general cardiology fellowship at Duke University Medical Center. During his time at Duke he completed a dedicated year in cardiovascular MRI at the Duke Cardiovascular MR Imaging Center. He returned to UVA in 2008 to complete a 2-year advanced cardiovascular imaging fellowship where he trained in CMR and cardiovascular CTA. He achieved COCATS Level III training in all cardiovascular imaging modalities (Echo, Nuclear, CMR, CCT), and is board certified in Echocardiography and Nuclear Cardiology. He served as faculty at UVA in Cardiology, Radiology, and Biomedical Engineering from 2010-2021 where he was the Director of Cardiac MRI and the Medical Director of Echocardiography, before returning to Stanford.
His research involves the development and evaluation of novel MRI pulse sequences and techniques to improve the clinical utility of CMR imaging. The current focus of the research is on quantitative myocardial perfusion imaging, quantitative imaging of myocardial fibrosis, rapid free-breathing and self-gated imaging, and deep learning for image reconstruction and post-processing. His laboratory includes undergraduate and graduate engineering students as well as clinical cardiovascular imaging fellows to bring new advances into clinical practice. Dr. Salerno has been in the field of MRI for 25 years and holds multiple patents related to the development and application of novel pulse sequences for MRI. He has received numerous research awards, and has published extensively in the areas of MRI, cardiovascular MRI and multi-modality cardiovascular imaging. His research has been supported by the AHA and the National Institutes of health. He is an associate editor for JACC Cardiovascular Imaging.
Outside of work, Dr. Salerno enjoys sailing, rock climbing, skiing, running, biking, hiking, and spending time with his wife Cherie, and his two boys Christopher and Joseph. -
J Kenneth Salisbury, Jr.
Professor (Research) of Computer Science and of Surgery (Anatomy), Emeritus
BioSalisbury worked on the development of the Stanford-JPL Robot Hand, the JPL Force Reflecting Hand Controller, the MIT-WAM arm, and the Black Falcon Surgical Robot. His work with haptic interface technology led to the founding of SensAble Technology, producers of the PHANToM haptic interface and software. He also worked on the development of telerobotic systems for dexterity enhancement in the operating room. His current research focuses on human-machine interaction, cooperative haptics, medical robotics, and surgical simulation.