Wu Tsai Neurosciences Institute


Showing 1-50 of 543 Results

  • Daniel A. Abrams

    Daniel A. Abrams

    Clinical Associate Professor, Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsAutism spectrum disorders (ASD) are among the most pervasive neurodevelopmental disorders and are characterized by significant deficits in social communication. A common observation in children with ASD is that affected individuals often “tune out” from social interactions, which likely impacts the development of social, communication, and language skills. My primary research goals are to understand why children with ASD often tune out from the social world and how this impacts social skill and brain development, and to identify remediation strategies that motivate children with ASD to engage in social interactions. The theoretical framework that guides my work is that social impairments in ASD stem from a primary deficit in identifying social stimuli, such as human voices and faces, as rewarding and salient stimuli, thereby precluding children with ASD from engaging with these stimuli.

    My program of research has provided important information regarding the brain circuits underlying social deficits in ASD. Importantly, these findings have consistently implicated key structures of the brain’s reward and salience processing systems, and support the hypothesis that impaired reward attribution to social stimuli is a critical aspect of social difficulties in ASD.

    My lab is currently conducting three research studies:

    Speaker-Listener Coupling and Brain Dynamics During Naturalistic Verbal Communication in Children with Autism
    We have a new study investigating how the brain processes and understands speech in children with Autism Spectrum Disorder as well as typically developing children. We are interested in understanding speech comprehension in children through anticipating incoming speech and accumulating speech information over a period of time.

    Speaker-Listener Coupling and Brain Dynamics During Naturalistic Verbal Communication in Alzheimer’s Disease
    In collaboration with the Alzheimer’s Disease Research Center, our new study is exploring how the brain enables us to understand speech, with a focus on both healthy older adults and adults with Alzheimer’s Disease. We also aim to understand how the brain measures seen while we listen and understand a story are linked to language skills in these individuals.

    Pivotal Response Treatment for Adolescents with High Functioning Autism Intervention Study
    This is a 9-week intervention focusing on key social skills for autistic adolescents, while exploring brain plasticity using fMRI imaging. Your child will receive 1:1 sessions with our clinician, with parent training in clinic. Topics include: Greetings, Departures, Question Asking, Talking the Right Amount, Empathy, Sarcasm, and Eating and Drinking. We also coordinate with the school for additional support and opportunities to practice the targeted social skills in a club of interest.

  • Monther Abu-Remaileh

    Monther Abu-Remaileh

    Assistant Professor of Chemical Engineering and of Genetics

    Current Research and Scholarly InterestsWe study the role of the lysosome in metabolic adaptation using subcellular omics approaches, functional genomics and innovative biochemical tools. We apply this knowledge to understand how lysosomal dysfunction leads to human diseases including neurodegeneration, cancer and metabolic syndrome.

  • Ehsan Adeli

    Ehsan Adeli

    Clinical Assistant Professor, Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsMy research lies in the intersection of Machine Learning, Computer Vision, Healthcare, and Computational Neuroscience.

  • Nima Aghaeepour

    Nima Aghaeepour

    Associate Professor (Research) of Anesthesiology, Perioperative and Pain Medicine (Adult MSD), of Pediatrics (Neonatology) and, by courtesy, of Biomedical Data Science

    BioThank you for your interest. Please use the links on the bottom right side of this page to learn more about our laboratory's work.

  • Raag Airan

    Raag Airan

    Assistant Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Psychiatry and Behavioral Sciences and of Materials Science and Engineering

    Current Research and Scholarly InterestsOur goal is to develop and clinically implement new technologies for high-precision and noninvasive intervention upon the nervous system. Every few millimeters of the brain is functionally distinct, and different parts of the brain may have counteracting responses to therapy. To better match our therapies to neuroscience, we develop techniques that allow intervention upon only the right part of the nervous system at the right time, using technologies like focused ultrasound and nanotechnology.

  • Gregory W. Albers, MD

    Gregory W. Albers, MD

    Coyote Foundation Professor and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsOur group’'s research focus is the acute treatment and prevention of cerebrovascular disorders. Our primary interest is the use of advanced imaging techniques to expand the treatment window for ischemic stroke. We are also conducting clinical studies of both neuroprotective and thrombolytic strategies for the treatment of acute stroke and investigating new antithrombotic strategies for stroke prevention.

  • Russ B. Altman

    Russ B. Altman

    Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine, of Biomedical Data Science, and Senior Fellow at the Stanford Institute for HAI

    Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/

  • Neal Amin

    Neal Amin

    Clinical Assistant Professor, Psychiatry and Behavioral Sciences

    BioDr. Neal D. Amin's research findings on gene regulatory mechanisms in the human nervous system have been the basis of articles in top journals, patents, awards, and research funding. He is corresponding author on works identifying cell type-specific RNA processing changes implicated in neurodegeneration. Other products of his research include a sole-author patent on gene delivery, speaking engagements at national and international conferences, and recognition and significant research funding from the NIH and private foundations including the BBRF and the Deeda Blair Research Initiative. His work applies advanced single cell transcriptomics, mice and human brain organoids, and deep learning models to identify gene regulatory network hubs associated with a wide range of diseases.

    Dr. Amin is a Clinical Assistant Professor in the Department of Psychiatry at Stanford University where he leads fundamental wet and dry lab research into brain development and disease. He an attending physician in Stanford's Evaluation Clinic where he continues to see patients. He completed the Research Track Psychiatry Residency Program at Stanford University and is a board-certified psychiatrist and his postdoctoral studies with Sergiu Pasca, MD. He earned MD and PhD degrees from the University of California, San Diego with his graduate mentor Samuel L. Pfaff, PhD, at the Salk Institute for Biological Studies in La Jolla, CA. He also holds a Bachelor of Arts from Columbia College, Columbia University.

  • Kanwaljeet S. Anand

    Kanwaljeet S. Anand

    Professor of Pediatrics (Pediatric Critical Care) and of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsDr. Anand is a translational clinical researcher who pioneered research on the endocrine-metabolic stress responses of infants undergoing surgery and developed the first-ever scientific rationale for pain perception in early life. This provided a framework for newer methods of pain assessment, numerous clinical trials of analgesia/anesthesia in newborns, infants and older children. His research focus over the past 30+ years has contributed fundamental knowledge about pediatric pain/stress, long-term effects of pain in early life, management of pain, mechanisms for opioid tolerance and withdrawal. Current projects in his laboratory are focused on developing biomarkers for repetitive pain/stress in critically ill children and the mechanisms underlying sedative/anesthetic neurotoxicity in the immature brain. He designed and directed many randomized clinical trials (RCT), including the largest-ever pediatric analgesia trial studying morphine therapy in ventilated preterm neonates. He has extensive experience in clinical and translational research from participating in collaborative networks funded by NIMH, NINDS, or NICHD, a track-record of excellent collaboration across multiple disciplines, while achieving success with large research teams like the Collaborative Pediatric Critical Care Research Network (CPCCRN). He played a leadership roles in CANDLE (Condition Affecting Neuro-Development & Learning in Early infancy) and other activities of the Urban Child Institute and UT Neuroscience Institute. More recently, he led the NeoOpioid Consortium funded by the European Commission, which collected data from 243 NICUs in 18 European countries.

  • Katrin Andreasson

    Katrin Andreasson

    Edward F. and Irene Thiele Pimley Professor of Neurology and Neurological Sciences

    Current Research and Scholarly InterestsOur research focuses on understanding how immune responses initiate and accelerate synaptic and neuronal injury in age-related neurodegeneration, including models of Alzheimer's disease and Parkinson's disease. We also focus on the role of immune responses in aggravating brain injury in models of stroke. Our goal is the identification of critical immune pathways that function in neurologic disorders and that can be targeted to elicit disease modifying effects.

  • Martin S. Angst

    Martin S. Angst

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsOur laboratory studies biological and clinical determinants of human resilience using surgery as an injury model.

  • Eric Appel

    Eric Appel

    Associate Professor of Materials Science and Engineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Pediatrics (Endocrinology)

    Current Research and Scholarly InterestsThe underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.

  • Bruce Arnow, Ph.D.

    Bruce Arnow, Ph.D.

    Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology - Adult)

    Current Research and Scholarly InterestsCurrent research interests include treatment outcome for major depression, particularly treatment refractory and chronic forms of major depression, as well as mediators and moderators of outcome; the epidemiology of chronic pain and depression; relationships between child maltreatment and adult sequelae, including psychiatric, medical and health care utilization.

  • Ann M. Arvin

    Ann M. Arvin

    Lucile Salter Packard Professor of Pediatrics and Professor of Microbiology and Immunology, Emerita

    Current Research and Scholarly InterestsOur laboratory investigates the pathogenesis of varicella zoster virus (VZV) infection, focusing on the functional roles of particular viral gene products in pathogenesis and virus-cell interactions in differentiated human cells in humans and in Scid-hu mouse models of VZV cell tropisms in vivo, and the immunobiology of VZV infections.

  • Stephen A. Baccus

    Stephen A. Baccus

    Professor of Neurobiology

    Current Research and Scholarly InterestsWe study how the neural circuitry of the vertebrate retina encodes visual information and performs computations. To control and measure the retinal circuit, we present visual images while performing simultaneous two-photon imaging and multielectrode recording. We perturb the circuit as it operates using simultaneous intracellular current injection and multielectrode recording, and use the resulting large data sets to construct models of retinal computation.

  • Jeremy Bailenson

    Jeremy Bailenson

    Thomas More Storke Professor, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Education
    On Leave from 10/01/2023 To 06/30/2024

    BioJeremy Bailenson is founding director of Stanford University’s Virtual Human Interaction Lab, Thomas More Storke Professor in the Department of Communication, Professor (by courtesy) of Education, Professor (by courtesy) Program in Symbolic Systems, and a Senior Fellow at the Woods Institute for the Environment. He has served as Director of Graduate Studies in the Department of Communication for over a decade. He earned a B.A. from the University of Michigan in 1994 and a Ph.D. in cognitive psychology from Northwestern University in 1999. He spent four years at the University of California, Santa Barbara as a Post-Doctoral Fellow and then an Assistant Research Professor.

    Bailenson studies the psychology of Virtual and Augmented Reality, in particular how virtual experiences lead to changes in perceptions of self and others. His lab builds and studies systems that allow people to meet in virtual space, and explores the changes in the nature of social interaction. His most recent research focuses on how virtual experiences can transform education, environmental conservation, empathy, and health. He is the recipient of the Dean’s Award for Distinguished Teaching at Stanford. In 2020, IEEE recognized his work with “The Virtual/Augmented Reality Technical Achievement Award”.

    He has published more than 200 academic papers, spanning the fields of communication, computer science, education, environmental science, law, linguistics, marketing, medicine, political science, and psychology. His work has been continuously funded by the National Science Foundation for over 25 years.

    His first book Infinite Reality, co-authored with Jim Blascovich, emerged as an Amazon Best-seller eight years after its initial publication, and was quoted by the U.S. Supreme Court. His new book, Experience on Demand, was reviewed by The New York Times, The Wall Street Journal, The Washington Post, Nature, and The Times of London, and was an Amazon Best-seller.

    He has written opinion pieces for The Washington Post, The Wall Street Journal, Harvard Business Review, CNN, PBS NewsHour, Wired, National Geographic, Slate, The San Francisco Chronicle, TechCrunch, and The Chronicle of Higher Education, and has produced or directed six Virtual Reality documentary experiences which were official selections at the Tribeca Film Festival. His lab has exhibited VR in hundreds of venues ranging from The Smithsonian to The Superbowl.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry
    On Partial Leave from 04/01/2024 To 06/30/2024

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 211.

    Bao is a member of the US National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.

  • Annelise E. Barron

    Annelise E. Barron

    Associate Professor of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsBiophysical mechanisms of host defense peptides (a.k.a. antimicrobial peptides) and their peptoid mimics; also, molecular and cellular biophysics of human innate immune responses.

  • Michael Bassik

    Michael Bassik

    Associate Professor of Genetics

    Current Research and Scholarly InterestsWe are an interdisciplinary lab focused on two major areas:(1) we seek to understand mechanisms of cancer growth and drug resistance in order to find new therapeutic targets(2) we study mechanisms by which macrophages and other cells take up diverse materials by endocytosis and phagocytosis; these substrates range from bacteria, viruses, and cancer cells to drugs and protein toxins. To accomplish these goals, we develop and use new technologies for high-throughput functional genomics.

  • Fiona Baumer

    Fiona Baumer

    Assistant Professor of Neurology (Pediatric Neurology) and of Pediatrics

    Current Research and Scholarly InterestsCauses of Disturbed Cognition in Pediatric Epilepsy

  • Philip Beachy

    Philip Beachy

    The Ernest and Amelia Gallo Professor, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsFunction of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.

  • Gill Bejerano

    Gill Bejerano

    Professor of Developmental Biology, of Computer Science, of Pediatrics (Genetics) and of Biomedical Data Science

    Current Research and Scholarly Interests1. Automating monogenic patient diagnosis.
    2. The genomic signatures of independent divergent and convergent trait evolution in mammals.
    3. The logic of human gene regulation.
    4. The reasons for sequence ultraconservation.
    5. Cryptogenomics to bridge medical silos.
    6. Cryptogenetics to debate social injustice.
    7. Managing patient risk using machine learning.
    8. Understanding the flow of money in the US healthcare system.

  • Sean Bendall

    Sean Bendall

    Associate Professor of Pathology

    Current Research and Scholarly InterestsOur goal is to understand the mechanisms regulating the development of human systems. Drawing on both pluripotent stem cell biology, hematopoiesis, and immunology, combined with novel high-content single-cell analysis (CyTOF – Mass Cytometry) and imagining (MIBI-Multiplexed Ion Beam Imaging) we are creating templates of ‘normal’ human cellular behavior to both discover novel regulatory events and cell populations as well as understand dysfunctional processes such as cancer.

  • Jonathan Berger

    Jonathan Berger

    Denning Family Provostial Professor
    On Leave from 10/01/2023 To 06/30/2024

    BioJonathan Berger is the Denning Family Provostial Professor in Music at Stanford University, where he teaches composition, music theory, and cognition at the Center for Computer Research in Music and Acoustics (CCRMA).
    Jonathan is a 2017 Guggenheim Fellow and a 2016 winner of the Rome Prize.
    He was the founding co-director of the Stanford Institute for Creativity and the Arts (SICA, now the Stanford Arts Institute) and founding director of Yale University’s Center for Studies in Music Technology
    Described as “gripping” by both the New York Times and the Chicago Tribune, “poignant”, “richly evocative” (San Francisco Chronicle), “taut, and hauntingly beautiful” (NY Times), Jonathan Berger’s recent works deal with both consciousness and conscience. His monodrama, My Lai, toured internationally. The Kronos Quartet's recording was released by Smithsonian/Folkways. His opera, The Ritual of Breath is the Rite to Resist will be performed at Lincoln Center in July 2024.
    Thrice commissioned by The National Endowment for the Arts, Berger’a recent commissions include The Mellon and Rockefeller Foundations, Chamber Music Society, Lincoln Center, and Chamber Music America.
    Upcoming commissions include a new work for the Kronos Quartet.
    In addition to composition, Berger is an active researcher with over 80 publications in a wide range of fields relating to music, science and technology and has held research grants from DARPA, the Wallenberg Foundation, The National Academy of Sciences, the Keck Foundation, and others.
    Berger is the PI of a major grant from the Templeton Religion Trust to study how music and architecture interact to create a sense of awe.

  • Rebecca A. Bernert, PhD, ABPP, FT

    Rebecca A. Bernert, PhD, ABPP, FT

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    BioI am an Assistant Professor of Psychiatry and Behavioral Sciences and a licensed clinical psychologist in the Stanford University School of Medicine. I am a suicidologist, with subspecialty expertise in clinical trials, epidemiology, and suicide prevention best practices. I have joint specialty in behavioral sleep medicine, treatment development, and thanatology. I am Founding Director of The Stanford Suicide Prevention Research Laboratory, and Co-Chair a number of initiatives to support multidisciplinary efforts in suicide prevention. Our program utilizes cognitive, biological (e.g., fMRI), and behavioral testing paradigms, with an emphasis on translational therapeutics across the lifespan. Our mission is to identify novel therapeutics, including seminal work to establish the subfield of sleep and suicide prevention. A special focus is the development of rapid-action, low-risk interventions for the prevention of suicide. Our mission is to evaluate transdiagnostic risk factors and biomarkers underlying treatment response that may inform etiology, reduce stigma, and advance innovation. Advocating for its utility as a visible, yet non-stigmatizing warning sign of suicide—our earliest work delineated sleep as a risk factor for suicidal behaviors. Funded by NIH and DOD, we subsequently conducted the first suicide prevention clinical trials, testing efficacy of a rapid-action (6 h) insomnia treatment for suicidal behaviors. These use a mechanisms focus to identify central disease processes (eg, underlying neural circuitry, behavioral factors) for anti-suicidal response. An overarching aim is to harness new technologies to aid risk prediction, precision medicine, and intervention opportunity. We are committed to improving national training practices (e.g., national needs-assessment of medical training parameters; AI for suicide prevention), and lead hospital best practices for safety in screening, triage, and postvention.

    Regarding translation to policy, I have served as a content expert for nationally-directed health initiatives with NIH, VA, DOD, DARPA, SAMHSA, CDC, and The White House. I recently led development of the CA 2020-25 Statewide Strategy for Suicide Prevention, following invited testimony (CA State Assembly) and a commissioned Policy Brief on suicide prevention best practices. Advisory and advocacy work centers on how research guides public health policy and implementation. I am especially committed to initiatives promising impact to suicide prevention on a broad scale, including universal strategies for lethal means restriction and real-time surveillance of suicidal behaviors. To this end, I have been honored to serve as a content expert to The White House Office of Science and Technology for initiatives focused on technology innovation and led advisory work promoting suicide deterrent systems for private organizations and public sites, such as the Golden Gate Bridge. I have consulted for technology companies, as well as private industry and healthcare partners.

    Inspired by maternity leaves coinciding with the above work, I have a separate research line examining organizational development, inclusive practices, sleep and employee wellness. This addresses disparate impact of institutional and federal medical leave practices on recruitment and retention of women. Our program focuses on cost-effective policy for diversity training and reduced attrition of women in medicine, law, STEM and technology fields. As such, I am dedicated to spearheading development of a Stanford Center for Policy, Inclusive Practices, and Equity Education.

    To donate or partner with us, please contact Deborah Stinchfield (Stanford Medical Center Development) medicalgiving@stanford.edu or please contact us directly.

  • Edward Bertaccini

    Edward Bertaccini

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly Interestsmolecular modeling of anesthetic-protein interactions, molecular modeling of the ligand-gated ion channels

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology

    BioProfessor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). She is now the Baker Family Director of Stanford ChEM-H.

    Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, the ACS Award in Pure Chemistry, and the Chemistry of the Future Solvay Prize, among others.

    The Bertozzi Group develops chemical tools to study the glycobiology underlying diseases such as cancer, inflammation, tuberculosis and most recently COVID-19. She is the inventor of "bioorthogonal chemistry", a class of chemical reactions compatible with living systems that enable molecular imaging and drug targeting. Her group also developed new therapeutic modalities for targeted degradation of extracellular biomolecules, such as antibody-enzyme conjugates and Lysosome Targeting Chimeras (LYTACs). As well, her group studies NGly1 deficiency, a rare genetic disease characterized by loss of the human N-glycanase.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi cofounded Redwood Bioscience, Enable Biosciences, Palleon Pharmaceuticals, InterVenn Bio, OliLux Bio, Grace Science LLC and Lycia Therapeutics. She is also a member of the Board of Directors of Lilly.

  • Sandip Biswal, MD

    Sandip Biswal, MD

    Adjunct Clinical Professor, Radiology

    Current Research and Scholarly InterestsThe management of individuals suffering from chronic pain is unfortunately limited by poor diagnostic tests and therapies. Our research group is interested in 'imaging pain' by using novel imaging techniques to study peripheral nociception and inflammation with the goal of accurately identifying the location of pain generators. We are developing new approaches with positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET/MRI) and are currently in clinical trials.

  • Jose Humberto Blanchet Mancilla

    Jose Humberto Blanchet Mancilla

    Professor of Management Science and Engineering

    BioJose Blanchet is a Professor of Management Science and Engineering (MS&E) at Stanford. Prior to joining MS&E, he was a professor at Columbia (Industrial Engineering and Operations Research, and Statistics, 2008-2017), and before that he taught at Harvard (Statistics, 2004-2008). Jose is a recipient of the 2010 Erlang Prize and several best publication awards in areas such as applied probability, simulation, operations management, and revenue management. He also received a Presidential Early Career Award for Scientists and Engineers in 2010. He worked as an analyst in Protego Financial Advisors, a leading investment bank in Mexico. He has research interests in applied probability and Monte Carlo methods. He is the Area Editor of Stochastic Models in Mathematics of Operations Research. He has served on the editorial board of Advances in Applied Probability, Bernoulli, Extremes, Insurance: Mathematics and Economics, Journal of Applied Probability, Queueing Systems: Theory and Applications, and Stochastic Systems, among others.

  • Helen M. Blau

    Helen M. Blau

    Donald E. and Delia B. Baxter Foundation Professor, Director, Baxter Laboratory for Stem Cell Biology and Professor, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsProf. Helen Blau's research area is regenerative medicine with a focus on stem cells. Her research on nuclear reprogramming and demonstrating the plasticity of cell fate using cell fusion is well known and her laboratory has also pioneered the design of biomaterials to mimic the in vivo microenvironment and direct stem cell fate. Current findings are leading to more efficient iPS generation, cell based therapies by dedifferentiation a la newts, and discovery of novel molecules and therapies.

  • Nikolas Blevins, MD

    Nikolas Blevins, MD

    Larry and Sharon Malcolmson Professor in the School of Medicine, Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsInner ear microendoscopy -- Developing techniques for minimally-invasive imaging of inner ear microanatomy and neural pysiology. Applications include improved cochlear implant development, inner ear regenerative techniques, inner ear surgery, and auditory physiology.

    Microsurgical robotics -- Developing scalable microsurgical instrumentation and robotic techniques for use in head and neck surgery.

    Surgical Simulation -- Immersive environment for temporal bone surgical simulation.

  • Kwabena Boahen

    Kwabena Boahen

    Professor of Bioengineering and of Electrical Engineering

    Current Research and Scholarly InterestsBoahen's group analyzes neural behavior computationally to elucidate principles of neural design at the cellular, circuit, and systems levels; and synthesizes neuromorphic electronic systems that scale energy-use with size as efficiently as the brain does. This interdisciplinary research program bridges neurobiology and medicine with electronics and computer science, bringing together these seemingly disparate fields.

  • Jo Boaler

    Jo Boaler

    Nomellini and Olivier Professor in the Graduate School of Education

    Current Research and Scholarly InterestsStudying the Impact of a Mathematical Mindset Summer Intervention, HapCaps: Design and Validation of Haptic Devices for improving Finger Perception (with engineering & neuroscience) The effectiveness of a student online class (https://lagunita.stanford.edu/courses/Education/EDUC115-S/Spring2014/about) (NSF). Studies on mathematics and mindset with Carol Dweck and Greg Walton (various funders). Studying an online network and it's impact on teaching and learning (Gates foundation)

  • Cara Bohon

    Cara Bohon

    Clinical Associate Professor, Psychiatry and Behavioral Sciences - Child & Adolescent Psychiatry and Child Development

    Current Research and Scholarly InterestsMy research interests have focused on the neural bases of eating disorders. I am particularly interested in the way emotion and reward is processed in the brain and how that may contribute to eating behavior and food restriction. I hope to eventually translate biological research findings into treatments.

  • Paul Bollyky

    Paul Bollyky

    Associate Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsChronic bacterial infections are a major health care problem. Our lab is interested in understanding the host and microbial factors that perpetuate chronic infections and in developing novel therapeutic interventions to improve human health.

  • Anna Maria Bombardieri

    Anna Maria Bombardieri

    Clinical Assistant Professor, Anesthesiology, Perioperative and Pain Medicine
    Masters Student in Epidemiology and Clinical Research, admitted Autumn 2022

    Current Research and Scholarly InterestsMy overall research goal is to advance clinical practice by providing anesthesiologists with data to most effectively maintain cerebral blood flow in the perioperative period.
    I am interested in the effect of the autonomic nervous system on cerebral blood flow regulation.
    I intend to combine regional anesthetic techniques and noninvasive bedside cerebral blood flow monitoring to understand the effect of the sympathetic system on cerebral blood flow.
    A secondary goal is to apply this new knowledge to investigate whether cervical sympathetic blocks improve long term neurological outcomes.

  • Steven Boxer

    Steven Boxer

    Camille Dreyfus Professor of Chemistry

    Current Research and Scholarly InterestsPlease visit my website for complete information:
    http://www.stanford.edu/group/boxer/

  • Mark Brongersma

    Mark Brongersma

    Stephen Harris Professor, Professor of Materials Science and Engineering and, by courtesy, of Applied Physics

    BioMark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD in Materials Science from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. During this time, he coined the term “Plasmonics” for a new device technology that exploits the unique optical properties of nanoscale metallic structures to route and manipulate light at the nanoscale. His current research is directed towards the development and physical analysis of nanostructured materials that find application in nanoscale electronic and photonic devices. Brongersma received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the Optical Society of America, the SPIE, and the American Physical Society.

  • Helen Bronte-Stewart, MD, MS

    Helen Bronte-Stewart, MD, MS

    John E. Cahill Family Professor, Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research focus is human motor control and brain pathophysiology in movement disorders. Our overall goal is to understand the role of the basal ganglia electrical activity in the pathogenesis of movement disorders. We have developed novel computerized technology to measure fine, limb and postural movement. With these we are measuring local field potentials in basal ganglia nuclei in patients with Parkinson's disease and dystonian and correlating brain signalling with motor behavior.

  • Anne Brunet

    Anne Brunet

    Michele and Timothy Barakett Endowed Professor

    Current Research and Scholarly InterestsOur lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.

  • Axel Brunger

    Axel Brunger

    Professor of Molecular and Cellular Physiology, of Neurology, of Photon Science and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsOne of Axel Brunger's major goals is to decipher the molecular mechanisms of synaptic neurotransmitter release by conducting imaging and single-molecule/particle reconstitution experiments, combined with near-atomic resolution structural studies of the synaptic vesicle fusion machinery.

  • Jennifer L. Bruno

    Jennifer L. Bruno

    Instructor, Psychiatry and Behavioral Sciences - Interdisciplinary Brain Sciences

    Current Research and Scholarly InterestsDr. Bruno is a translational researcher at the interface of developmental cognitive neuropsychology and neurobiology. An overarching goal of her work is to understand developmental windows of vulnerability—periods of risk for falling off the trajectory of typical brain development. Her research utilizes genetics, brain imaging, and deep behavioral phenotyping to bridge computational science with clinical knowledge, translating cutting-edge science to solve problems of great clinical need.

  • Zev Bryant

    Zev Bryant

    Associate Professor of Bioengineering and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsMolecular motors lie at the heart of biological processes from DNA replication to vesicle transport. My laboratory seeks to understand the physical mechanisms by which these nanoscale machines convert chemical energy into mechanical work.

  • Vivek P. Buch, MD

    Vivek P. Buch, MD

    Assistant Professor of Neurosurgery

    BioDr. Buch is a neurosurgeon with fellowship training in epilepsy, functional, and minimally invasive neurosurgery. He is an Assistant Professor of Neurosurgery, and Christina and Hamid Moghadam Faculty Scholar at Stanford University.

    Dr. Buch focuses his expertise on the open and minimally invasive treatment of epilepsy, low grade brain tumors, movement and neuropsychiatric disorders, facial and body pain syndromes, and other complex neurological conditions. He uses advanced and innovative techniques to treat both adult and pediatric patients. For each patient, he develops a personalized care plan that is designed to be both comprehensive and compassionate.

    Dr. Buch has conducted extensive research. His career goal is to develop restorative bioengineering approaches for complex neurocognitive, neurodevelopmental, and neuropsychiatric disorders. He is creating network-neuroprosthetics and focused ultrasound delivery mechanisms for precision cellular, gene, and molecular therapies to restore abnormal brain circuit function in these vulnerable patient populations. He is further pioneering novel intraoperative technologies including personalized network-based targeting, holographic mixed reality, and artificial intelligence platforms for minimally invasive cranial surgery.

    He has co-authored articles on his research discoveries in Nature Medicine, Neuron, Brain, Annals of Surgery, Frontiers in Neuroscience, Epilepsia, Brain Stimulation, Stereotactic and Functional Neurosurgery, Surgical Innovation, Frontiers in Surgery, Journal of Neurosurgery, and many other journals. Articles focus on developing novel network control theory applications to human brain functions and new techniques and technologies to enhance neurosurgical effectiveness and patient outcomes.

    He is the Section Editor for NEUROSURGERY, and a guest editor for Surgical Innovation and Brain Sciences. He also has co-authored chapters in the books Neurosurgical Atlas, Operative Techniques in Epilepsy Surgery, Deep Brain Stimulation, and The Encyclopedia of Medical Robotics.

    Dr. Buch has presented the findings of his research at the national conferences of numerous professional associations. Among them are the American Association of Neurological Surgeons, Society for Neuroscience, Congress of Neurological Surgeons, and Society for Imaging Informatics in Medicine. Topics include understanding network mechanisms of cognitive control and advances in the use of augmented reality technology to enhance neurosurgical approaches.

    For his clinical, research, and academic achievements. Dr. Buch has earned many honors. He has won awards from the American Association of Neurological Surgeons, American Roentgen Ray Society, Congress of Neurological Surgeons, and National Institutes of Health.

    Dr. Buch is a member of the American Association of Neurological Surgeons, Congress of Neurological Surgeons, World Society for Stereotactic and Functional Neurosurgery, American Association of Stereotactic and Functional Neurosurgery, and Alpha Omega Alpha Medical Honor Society.

    He holds patents on such topics as artificial intelligence systems designed to help guide surgery and neural control signals for behavioral modification and closed-loop stimulation therapy.

  • Paul Buckmaster, DVM, PhD

    Paul Buckmaster, DVM, PhD

    Professor of Comparative Medicine and of Neurology
    On Leave from 11/13/2023 To 08/08/2024

    Current Research and Scholarly InterestsMechanisms of epilepsy, especially temporal lobe epilepsy.

  • Marion S. Buckwalter, MD, PhD

    Marion S. Buckwalter, MD, PhD

    Professor of Neurology (Adult Neurology) and of Neurosurgery

    Current Research and Scholarly InterestsThe goal of the Buckwalter Lab is to improve how people recover after a stroke. We use basic and clinical research to understand the cells, proteins, and genes that lead to successful recovery of function, and also how complications develop that impact quality of life after stroke. Ongoing projects are focused on understanding how inflammatory responses are regulated after a stroke and how they affect short-term brain injury and long term outcomes like dementia and depression.