Wu Tsai Neurosciences Institute


Showing 11-20 of 377 Results

  • Michael Bassik

    Michael Bassik

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsMy laboratory is focused on (1) the development of new technologies for high-throughput functional genomics using the CRISPR/Cas9 system, and (2) application of these tools to study the cellular response to drugs and endocytic pathogens (such as bacteria, viruses, and protein toxins). Fascinating in themselves, these pathogens also help illuminate basic cell biology. A complementary interest is in the identification of new drug targets and combinations to combat cancer and neurodegeneration.

  • Gill Bejerano

    Gill Bejerano

    Associate Professor of Developmental Biology, of Computer Science, of Biomedical Data Science and of Pediatrics (Genetics)

    Current Research and Scholarly InterestsDr. Bejerano, co-discoverer of ultraconserved elements, studies the Human Genome. His research focuses on genome sequence and function in both humans and related primate, mammalian and vertebrate species. He is deeply interested in mapping both coding and non-coding genome sequence variation to phenotype differences, and in extracting specific genetic insights from high throughput sequencing measurements, in the contexts of development and developmental abnormalities.

  • Sean Bendall

    Sean Bendall

    Assistant Professor (Research) of Pathology

    Current Research and Scholarly InterestsOur goal is to understand the mechanisms regulating the development of human systems. Drawing on both pluripotent stem cell biology, hematopoiesis, and immunology, combined with novel high-content single-cell analysis (CyTOF – Mass Cytometry) and imagining (MIBI-Multiplexed Ion Beam Imaging) we are creating templates of ‘normal’ human cellular behavior to both discover novel regulatory events and cell populations as well as understand dysfunctional processes such as cancer.

  • Jonathan Berger

    Jonathan Berger

    Denning Family Provostial Professor

    BioJonathan Berger is the Denning Family Provostial Professor in Music at Stanford University, where he teaches composition, music theory, and cognition at the Center for Computer Research in Music and Acoustics (CCRMA).
    Jonathan is a 2017 Guggenheim Fellow and a 2016 winner of the Rome Prize.
    He was the founding co-director of the Stanford Institute for Creativity and the Arts (SICA, now the Stanford Arts Institute) and founding director of Yale University’s Center for Studies in Music Technology
    Described as “gripping” by both the New York Times and the Chicago Tribune, “poignant”, “richly evocative” (San Francisco Chronicle), “taut, and hauntingly beautiful” (NY Times), Jonathan Berger’s recent works deal with both consciousness and conscience. The Kronos Quartet toured recent monodrama, My Lai internationally. Thrice commissioned by The National Endowment for the Arts, Berger’a recent commissions include The Mellon and Rockefeller Foundations, Chamber Music Society, Lincoln Center, and Chamber Music America. Upcoming commissions include an oratorio entitled The Ritual of Breath, and Leonardo, for baritone and chamber orchestra.
    In addition to composition, Berger is an active researcher with over 80 publications in a wide range of fields relating to music, science and technology and has held research grants from DARPA, the Wallenberg Foundation, The National Academy of Sciences, the Keck Foundation, and others.

  • Rebecca Bernert

    Rebecca Bernert

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    BioDr. Bernert is Founding Director of the Suicide Prevention Research Laboratory, and Co-Chairs a special departmental initiative to develop a Center for Premature Mortality and Suicide Prevention. She is a suicidologist, with subspecialty expertise in suicide prevention clinical trials, standardized suicide risk assessment and best practice management, and the epidemiology of self-directed violence. She has subspecialty training in behavioral sleep medicine, with a background in sleep and circadian physiology. Her program utilizes cognitive, biologic (e.g., fMRI), and behavioral testing paradigms, with an emphasis on translational therapeutics. Dr. Bernert has collaborated with NIH, DOD, DARPA, SAMHSA, and CDC on suicide prevention initiatives; and recently served as a content expert for the White House 2015 Open Data and Innovation for Suicide Prevention #Hackathon. She has also contributed to the development of clinical practice parameters, including the 2013 VA/DOD Clinical Practice Guidelines for the Assessment and Management of Suicide Risk, with current work underway focused on investigating medical education training in suicide risk assessment and management. Her research focuses on the identification of novel therapeutic targets for suicide prevention across the lifespan, particularly those aiming to reduce stigma and enhance access to care. A specific focus of this work emphasizes the use of rapid-action, low-risk treatment approaches for the prevention of suicide. Dr. Bernert has several suicide prevention trials underway, funded by NIH and DOD, testing the preliminary efficacy of a non pharmacological insomnia treatment on suicidal behaviors. She also has several grants focused on the development of a data monitoring system for the study of local suicide clusters and emergency department based protocols to improve risk detection within pediatric suicide prevention. Our aim is to delineate transdiagnostic risk factors and biomarkers of clinical response that may inform the pathogenesis of risk and treatment innovation. An overarching mission is to harness new technologies within suicide prevention, including artificial intelligence (AI) and mobile health applications, to enhance risk detection and multidisciplinary frameworks. Advisory and advocacy work, and the way in which research guides health policy, dissemination, and national strategies for suicide prevention, represents an extension of this work. This includes recent initiatives to establish national and local guidelines for lethal means restriction and calls for advanced technology use in suicide prevention research and strategy. Last, Dr. Bernert has several pilot projects underway focused on inclusive practices in faculty diversity and development, and the way in which family-friendly policies impact faculty recruitment and retention in academic medicine.

  • Edward Bertaccini

    Edward Bertaccini

    Professor of Anesthesiology, Perioperative and Pain Medicine at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly Interestsmolecular modeling of anesthetic-protein interactions, molecular modeling of the ligand-gated ion channels

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Director, ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Radiology and of Chemical and Systems Biology

    BioProfessor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, and the ACS Award in Pure Chemistry, among many others. Her efforts in undergraduate education have earned the UC Berkeley Distinguished Teaching Award and the Donald Sterling Noyce Prize for Excellence in Undergraduate Teaching.

    Today, the Bertozzi Group at Stanford studies the glycobiology underlying diseases such as cancer, inflammatory disorders such as arthritis, and infectious diseases such as tuberculosis. The work has advanced understanding of cell surface oligosaccharides involved in cell recognition and inter-cellular communication.

    Dr. Bertozzi's lab also develops new methods to perform controlled chemical reactions within living systems. The group has developed new tools for studying glycans in living systems, and more recently nanotechnologies for probing biological systems. Such "bioorthogonal" chemistries enable manipulation of biomolecules in their living environment.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi founded Redwood Bioscience of Emeryville, California, and has served on the research advisory board of GlaxoSmithKline.

  • Sandip Biswal, MD

    Sandip Biswal, MD

    Associate Professor of Radiology (Musculoskeletal Imaging) at the Stanford University Medical Center

    Current Research and Scholarly InterestsThe management of individuals suffering from chronic pain is unfortunately limited by poor diagnostic tests and therapies. Our research group is interested in 'imaging pain' by using novel imaging techniques to study peripheral nociception and inflammation with the goal of accurately identifying the location of pain generators. We are developing new approaches with positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET/MRI) and are currently in clinical trials.