Wu Tsai Neurosciences Institute


Showing 501-520 of 548 Results

  • Kevin Wang, MD, PhD

    Kevin Wang, MD, PhD

    Assistant Professor of Dermatology

    Current Research and Scholarly InterestsThe Wang lab takes an interdisciplinary approach to studying fundamental mechanisms controlling gene expression in mammalian cells, and how epigenetic mechanisms such as DNA methylation, chromatin modifications, and RNA influence chromatin dynamics to affect gene regulation.

  • Shan X. Wang

    Shan X. Wang

    Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsShan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.

  • Sui Wang, PhD

    Sui Wang, PhD

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsOur research focuses on unraveling the molecular mechanisms underlying retinal development and diseases. We employ genetic and genomic tools to explore how various retinal cell types, including neurons, glia, and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels. In addition, we investigate their interactions and collective contributions to maintain retinal integrity.

    1. Investigating retinal development:
    We utilize genetic tools and methods such as in vivo plasmid electroporation and CRISPR to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal development.

    2. Understanding diabetes-induced cell-type-specific responses in the retina:
    Diabetes triggers a range of multicellular responses in the retina, such as vascular lesions, glial dysfunction, and neurodegeneration, all of which contribute to retinopathy. We delve into the detailed molecular mechanisms underlying these diabetes-induced cell-type-specific responses and the pathogenesis of diabetic retinopathy.

    3. Developing molecular tools for labeling and manipulation of specific cell types in vivo:
    Cis-regulatory elements, particularly enhancers, play pivotal roles in directing tissue- and cell-type-specific expression. Our interest lies in identifying enhancers that can drive cell type-specific expression in the retina and brain. We incorporate these enhancers into plasmid or AAV-based delivery systems, enabling precise labeling and manipulation of specific cell types in vivo.

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Irving Weissman

    Irving Weissman

    Virginia & D.K. Ludwig Professor of Clinical Investigation in Cancer Research, Professor of Pathology, and of Developmental Biology

    Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis; order of events from hematopoietic stem cells [HSC] to AML leukemia stem cells and blood diseases, and parallels in other tissues; discovery of tumor and pathogenic cell 'don't eat me' and 'eat me' signals, and translation into therapeutics.

  • Itschak Weissman

    Itschak Weissman

    Professor of Electrical Engineering

    BioTsachy's research focuses on Information Theory, Data Compression and Communications, Statistical Signal Processing, Machine Learning, the interplay between them, and their applications, with recent focus on applications to genomic data compression and processing. He is inventor of several patents and involved in several companies as member of the technical board. IEEE fellow, he serves on the board of governors of the information theory society as well as the editorial boards of the Transactions on Information Theory and Foundations and Trends in Communications and Information Theory. He is founding Director of the Stanford Compression Forum.

  • Jill Saylin Wentzell

    Jill Saylin Wentzell

    Executive Director, Wu Tsai Neurosciences Institute

    Current Role at StanfordExecutive Director, Wu Tsai Neurosciences Institute

  • Marius Wernig

    Marius Wernig

    Professor of Pathology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine

  • Robert West

    Robert West

    Professor of Pathology

    Current Research and Scholarly InterestsRob West, MD, PhD, is a Professor of Pathology at Stanford University Medical Center. He is a clinician scientist with experience in translational genomics research to identify new prognostic and therapeutic markers in cancer. His research focus is on the progression of neoplasia to carcinoma. His lab has developed spatially oriented in situ methods to study archival specimens. He also serves as a surgical pathologist specializing in breast pathology.

  • Gordon Wetzstein

    Gordon Wetzstein

    Associate Professor of Electrical Engineering and, by courtesy, of Computer Science

    BioGordon Wetzstein is an Associate Professor of Electrical Engineering and, by courtesy, of Computer Science at Stanford University. He is the leader of the Stanford Computational Imaging Lab and a faculty co-director of the Stanford Center for Image Systems Engineering. At the intersection of computer graphics and vision, artificial intelligence, computational optics, and applied vision science, Prof. Wetzstein's research has a wide range of applications in next-generation imaging, wearable computing, and neural rendering systems. Prof. Wetzstein is a Fellow of Optica and the recipient of numerous awards, including an NSF CAREER Award, an Alfred P. Sloan Fellowship, an ACM SIGGRAPH Significant New Researcher Award, a Presidential Early Career Award for Scientists and Engineers (PECASE), an SPIE Early Career Achievement Award, an Electronic Imaging Scientist of the Year Award, an Alain Fournier Ph.D. Dissertation Award as well as many Best Paper and Demo Awards.

  • Matthew Wheeler

    Matthew Wheeler

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsTranslational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.

  • Leanne Williams

    Leanne Williams

    Vincent V.C. Woo Professor, Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and, by courtesy, of Psychology

    Current Research and Scholarly InterestsA revolution is under way in psychiatry. We can now understand mental illness as an expression of underlying brain circuit disruptions, shaped by experience and genetics. Our lab is defining precision brain circuit biotypes for depression, anxiety and related disorders. We integrate large amounts of brain imaging, behavioral and clinical data and computational approaches. Biotypes are used in personalized intervention studies with selective drugs, neuromodulation and exploratory therapeutics.

  • Nolan Williams

    Nolan Williams

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator) and, by courtesy, of Radiology (Neuroimaging and Neurointervention)

    BioDr. Williams is an Associate Professor within the Department of Psychiatry and Behavioral Sciences and the Director of the Stanford Brain Stimulation Lab. Dr. Williams has a broad background in clinical neuroscience and is triple board-certified in general neurology, general psychiatry, as well as behavioral neurology & neuropsychiatry. In addition, he has specific training and clinical expertise in the development of brain stimulation methodologies. Themes of his work include (a) examining the use of spaced learning theory in the application of neurostimulation techniques, (b) development and mechanistic understanding of rapid-acting antidepressants, and (c) identifying objective biomarkers that predict neuromodulation responses in treatment-resistant neuropsychiatric conditions. Dr. Williams' work has resulted in an FDA clearance for the world's first non-invasive, rapid-acting neuromodulation approach for treatment-resistant depression. He has published papers in high-impact peer-reviewed journals including Brain, American Journal of Psychiatry, and the Proceedings of the National Academy of Science. Results from his studies have gained widespread attention in journals such as Science and New England Journal of Medicine Journal Watch as well as in the popular press and have been featured in various news sources including Time, Smithsonian, and Newsweek. Dr. Williams received two NARSAD Young Investigator Awards in 2016 and 2018 along with the 2019 Gerald R. Klerman Award. Dr. Williams received the National Institute of Mental Health Biobehavioral Research Award for Innovative New Scientists in 2020.

  • Thomas J. Wilson

    Thomas J. Wilson

    Clinical Associate Professor, Neurosurgery

    BioDr. Thomas J. Wilson was born in Omaha, Nebraska. He attended the University of Nebraska College of Medicine, earning his MD with highest distinction. While a medical student, he was awarded a Howard Hughes Medical Institute Research Training Fellowship and spent a year in the lab of Dr. Rakesh Singh at the University of Nebraska. He was also elected to the prestigious Alpha Omega Alpha Honor Medical Society. He completed his residency training in neurological surgery at the University of Michigan and was mentored by Dr. Lynda Yang and Dr. John McGillicuddy in peripheral nerve surgery. Following his residency, he completed a fellowship in peripheral nerve surgery at the Mayo Clinic in Rochester, Minnesota, working with Dr. Robert Spinner. He is now Clinical Associate Professor and Co-Director of the Center for Peripheral Nerve Surgery at Stanford University. He also holds a Master of Public Health (MPH) degree from the Bloomberg School of Public Health at Johns Hopkins University, with focused certificates in Clinical Trials and Health Finance and Management. His research interests include peripheral nerve outcomes research, clinical trials advancing options for patients with peripheral nerve pathologies and spinal cord injuries, and translational research focused on improved imaging techniques to assist in diagnosing nerve pain and other peripheral nerve conditions. His clinical practice encompasses the treatment of all peripheral nerve pathologies, including entrapment neuropathies, nerve tumors, nerve injuries (including brachial plexus injuries, upper and lower extremity nerve injuries), and nerve pain. Dr. Wilson enjoys working in multi-disciplinary teams to solve complex problems of the peripheral nervous system. His wife, Dr. Monique Wilson, is a practicing dermatologist in the Bay Area.

  • Jeffrey J. Wine

    Jeffrey J. Wine

    Benjamin Scott Crocker Professor of Human Biology, Emeritus

    Current Research and Scholarly InterestsThe goal is to understand how a defective ion channel leads to the human genetic disease cystic fibrosis. Studies of ion channels and ion transport involved in gland fluid transport. Methods include SSCP mutation detection and DNA sequencing, protein analysis, patch-clamp recording, ion-selective microelectrodes, electrophysiological analyses of transmembrane ion flows, isotopic metho

  • Monte Winslow

    Monte Winslow

    Associate Professor of Genetics and of Pathology

    Current Research and Scholarly InterestsOur laboratory uses genome-wide methods to uncover alterations that drive cancer progression and metastasis in genetically-engineered mouse models of human cancers. We combine cell-culture based mechanistic studies with our ability to alter pathways of interest during tumor progression in vivo to better understand each step of metastatic spread and to uncover the therapeutic vulnerabilities of advanced cancer cells.

  • H.-S. Philip Wong

    H.-S. Philip Wong

    Willard R. and Inez Kerr Bell Professor in the School of Engineering

    BioH.-S. Philip Wong is the Willard R. and Inez Kerr Bell Professor in the School of Engineering at Stanford University. He joined Stanford University as Professor of Electrical Engineering in 2004. From 1988 to 2004, he was with the IBM T.J. Watson Research Center. From 2018 to 2020, he was on leave from Stanford and was the Vice President of Corporate Research at TSMC, the largest semiconductor foundry in the world, and since 2020 remains the Chief Scientist of TSMC in a consulting, advisory role.

    He is a Fellow of the IEEE and received the IEEE Electron Devices Society J.J. Ebers Award, the society’s highest honor to recognize outstanding technical contributions to the field of electron devices that have made a lasting impact, as well as the IEEE Andrew S. Grove Award, the IEEE Technical Field Award to honor individuals for outstanding contributions to solid-state devices and technology.

    He is the founding Faculty Co-Director of the Stanford SystemX Alliance – an industrial affiliate program focused on building systems, the faculty director of the Stanford Non-Volatile Memory Technology Research Initiative (NMTRI), and the faculty director of the Stanford Nanofabrication Facility – a shared facility for device fabrication on the Stanford campus that serves academic, industrial, and governmental researchers across the U.S. and around the globe, sponsored in part by the National Science Foundation.

  • S Simon Wong

    S Simon Wong

    Professor of Electrical Engineering, Emeritus

    Current Research and Scholarly InterestsCurrent research focuses on

    Resistive Random Access Memory (RRAM) and Integration with CMOS

    Energy Efficient Approximate Computing for Machine Learning

  • Wing Hung Wong

    Wing Hung Wong

    Stephen R. Pierce Family Goldman Sachs Professor of Science and Human Health and Professor of Biomedical Data Science

    Current Research and Scholarly InterestsCurrent interest centers on the application of statistics to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.