Wu Tsai Neurosciences Institute
Showing 501-520 of 597 Results
-
Gary K. Steinberg, MD, PhD
Bernard and Ronni Lacroute-William Randolph Hearst Professor of Neurosurgery and Neurosciences and Professor, by courtesy, of Neurology and Neurological Sciences
Current Research and Scholarly InterestsOur laboratory investigates the pathophysiology and treatment of cerebral ischemia, and methods to restore neurologic function after stroke. Treatment strategies include brain hypothermia, stem cell transplantation and optogenetic stimulation. Our clinical research develops innovative surgical, endovascular and radiosurgical approaches for treating difficult intracranial aneurysms, complex vascular malformations and occlusive disease, including Moyamoya disease, as well as stem cell transplant.
-
Lawrence Steinman, MD
George A. Zimmermann Professor and Professor of Pediatrics
Current Research and Scholarly InterestsOur laboratory is dedicated to understanding the pathogenesis of autoimmune diseases, particularly multiple sclerosis. We have developed several new therapies for autoimmunity, including some in Phase 2 clinical trials, as well as one approved drug, natalizumab. We have developed microarray technology for detecting autoantibodies to myelin proteins and lipids. We employ a diverse range of molecular and celluar approaches to trying to understand multiple sclerosis.
-
Lars Steinmetz
Dieter Schwarz Foundation Endowed Professor
Current Research and Scholarly InterestsThe Steinmetz lab develops genomic technologies to study the genetic basis of complex phenotypes, the mechanisms of gene regulation, and the molecular systems underpinning disease. We’re leveraging biological insights across scales and organisms to predict, diagnose, treat and ultimately prevent disease.
-
Aaron F. Straight
Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.
-
Thomas Sudhof
Avram Goldstein Professor in the School of Medicine, Professor of Neurosurgery and, by courtesy, of Neurology and Neurological Sciences and of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsInformation transfer at synapses mediates information processing in brain, and is impaired in many brain diseases. Thomas Südhof is interested in how synapses are formed, how presynaptic terminals release neurotransmitters at synapses, and how synapses become dysfunctional in diseases such as autism or Alzheimer's disease. To address these questions, Südhof's laboratory employs approaches ranging from biophysical studies to the electrophysiological and behavioral analyses of mutant mice.
-
Brian Suffoletto
Associate Professor of Emergency Medicine (Adult Clinical/Academic)
Current Research and Scholarly InterestsDr. Suffoletto is an emergency physician and NIH-funded investigator with a focus on collecting novel forms of longitudinal and remote data to inform temporal risk prediction and inform just-in-time adaptive interventions
-
Edith Vioni Sullivan
Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)
Current Research and Scholarly InterestsApplication of neuroimaging modalities and component process analysis of cognitive, sensory, and motor functions to identify brain structural and functional mechanisms disrupted in diseases affecting the brain: alcohol use disorder, HIV infection, dementia, and normal aging from adolescence to senescence.
-
Yang Sun, MD, PhD
Professor of Ophthalmology
Current Research and Scholarly InterestsWe are interested in the role of inositol phosphatases in eye development and disease, using both animal models and human disease tissue. We are a translational laboratory seeking to understand the basic function of proteins as well as developing therapeutic strategies for clinical trials.
-
Trisha Suppes, MD, PhD
Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)
Current Research and Scholarly InterestsLong-term treatment strategies for bipolar disorder, treatment for bipolar II disorder, use of treatment algorithms, and treatment of major depression.
-
Vidyani Suryadevara
Instructor, Radiology - Rad/Molecular Imaging Program at Stanford
Current Research and Scholarly InterestsA Bioengineer by training, she has a breadth of experiences across different scientific disciplines including pulmonary diseases, Alzheimer’s disease, and musculoskeletal disorders, wherein her research projects involved unraveling signaling mechanism behind the disease in order to identify new therapeutic targets and developing imaging modalities for early diagnosis of the disease, thus eventually improving the quality of life in patients. Her current work has been centered around age-associated pathophysiologies like osteoarthritis and Alzheimer's Disease. Her research currently focuses on the clinical translation of a novel noninvasive multimodality imaging approach to detect senescence in arthritis models. She has led teams of renowned senescence scientists across the US to develop expert recommendations for biomarkers for senescence. She is also a faculty fellow in the Center for Innovation at Global Health, wherein her focus is to develop region-specific lifestyle interventions to prevent dementia.
-
Katrin J Svensson
Assistant Professor of Pathology
Current Research and Scholarly InterestsMolecular metabolism
Protein biochemistry
Cell biology and function
Animal physiology -
Holly Tabor
Professor of Medicine (Primary Care & Population Health) and, by courtesy, of Pediatrics (Stanford Center of Biomedical Ethics)
Current Research and Scholarly InterestsMy research focuses on ethical issues in genetics and genomics, specifically return of results and translation for exome and whole genome sequencing and translation of genomic sequencing into the clinical setting. I also conduct research on ethical issues in clinical care and research for patients and families with autism and other developmental and cognitive disabilities.
-
William Talbot
Mary and Dr. Salim Shelby Professor
Current Research and Scholarly InterestsWe use genetic and cellular approaches to investigate the molecular basis of glial development and myelination in the zebrafish.
-
Longzhi Tan
Assistant Professor of Neurobiology
Current Research and Scholarly InterestsThe Tan Lab studies the single-cell 3D genome architectural basis of neurodevelopment and aging by developing the next generation of in vivo multi-omic assays and algorithms, and applying them to the human and mouse cerebellum.
-
Hua Tang
Professor of Genetics and, by courtesy, of Statistics
Current Research and Scholarly InterestsDevelop statistical and computational methods for population genomics analyses; modeling human evolutionary history; genetic association studies in admixed populations.
-
Daniel Tartakovsky
Professor of Energy Science Engineering
Current Research and Scholarly InterestsEnvironmental fluid mechanics, Applied and computational mathematics, Biomedical modeling.
-
Peter Tass
Professor of Neurosurgery
BioDr. Peter Tass investigates and develops neuromodulation techniques for understanding and treating neurologic conditions such as Parkinson’s disease, epilepsy, dysfunction following stroke and tinnitus. He creates invasive and non-invasive therapeutic procedures by means of comprehensive computational neuroscience studies and advanced data analysis techniques. The computational neuroscience studies guide experiments that use clinical electrophysiology measures, such as high density EEG recordings and MRI imaging, and various outcome measures. He has pioneered a neuromodulation approach based on thorough computational modelling that employs dynamic self-organization, plasticity and other neuromodulation principles to produce sustained effects after stimulation. To investigate stimulation effects and disease-related brain activity, he focuses on the development of stimulation methods that cause a sustained neural desynchronization by an unlearning of abnormal synaptic interactions. He also performs and contributes to pre-clinical and clinical research in related areas.
-
Vivianne Tawfik
Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult Pain)
Current Research and Scholarly InterestsMy overall research interest is to understand how the immune system interacts with the nervous system after injury to promote the transition from acute to chronic pain. In my clinical practice I care for patients with persistent pain that often occurs after minor trauma such as fracture or surgery. Using basic science approaches including whole system immune phenotyping with mass cytometry and genetic manipulation of peripheral and central immune cells, we seek to dissect the temporal and tissue-specific contribution of these cells to either promotion or inhibition of healing.