Wu Tsai Neurosciences Institute


Showing 301-350 of 556 Results

  • Jaime Lopez, MD

    Jaime Lopez, MD

    Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy clinical interests are in the areas of Intraoperative Neurophysiologic Monitoring (IOM), clinical neurophysiology, electromyopgraphy and in the use of botulinum toxins in the treatment of neurologic disorders. Our IOM group’s research is in the development of new and innovative techniques for monitoring the nervous system during surgical and endovascular procedures and how these alter surgical management and patient outcomes. I am also active in formulating national IOM practice guidelines.

  • Christopher Lowe

    Christopher Lowe

    Professor of Biology

    Current Research and Scholarly InterestsEvolution and development, specifically the evolution of the deuterostomes

  • Bingwei Lu

    Bingwei Lu

    Professor of Pathology

    Current Research and Scholarly InterestsWe are interested in understanding how neural stem cells balance their self-renewal and differentiation and how deregulation of this process can result in brain tumor. We are also interested in mechanisms of neurodegeneration in Alzheimer’s and Parkinson’s diseases. We are using both Drosophila and mammalian models to address these fundamental questions.

  • Liqun Luo

    Liqun Luo

    Ann and Bill Swindells Professor and Professor, by courtesy, of Neurobiology

    Current Research and Scholarly InterestsWe study how neurons are organized into specialized circuits to perform specific functions and how these circuits are assembled during development. We have developed molecular-genetic and viral tools, and are combining them with transcriptomic, proteomic, physiological, and behavioral approaches to study these problems. Topics include: 1) assembly of the fly olfactory circuit; 2) assembly of neural circuits in the mouse brain; 3) organization and function of neural circuits; 4) Tool development.

  • M Bruce MacIver

    M Bruce MacIver

    Professor (Research) of Anesthesiology, Perioperative and Pain Medicine, Emeritus

    Current Research and Scholarly InterestsWe study drug effects on the nervous system. Cellular, synaptic and molecular drug actions are investigated using electrophysiological and pharmacological tools in cortical/hippocampal brain slice preparations. We are also interested in mechanisms of neuronal integration and synchronization, especially related to patterns of EEG activity seen in vivo and in brain slices.

  • Sean Mackey, M.D., Ph.D.

    Sean Mackey, M.D., Ph.D.

    Redlich Professor, Professor of Anesthesiology, Perioperative, and Pain Medicine and, by courtesy, of Neurology

    Current Research and Scholarly InterestsMultiple NIH funded projects to characterize CNS mechanisms of human pain. Comparative effectiveness of cognitive behavioral therapy and chronic pain self-management within the context of opioid reduction (PCORI funded). Single session pain catastrophizing treatment: comparative efficacy & mechanisms (NIH R01). Development and implementation of an open-source learning healthcare system, CHOIR (http://choir/stanford.edu), to optimize pain care and innovative research in real-world patients.

  • Daniel V. Madison

    Daniel V. Madison

    Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsOur underlying forms of activity-dependent synaptic plasticity such as long-term potentiation and long-term depression, and in particular the function and plasticity of Parvalbumin-containing interneurons in neocortex. In the past few years, we have used a combinatorial approach to comparing physiological and anatomical plasticity-induced changes in synapses using electrode recording and Array Tomography in the same neurons.

  • Merritt Maduke

    Merritt Maduke

    Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsMolecular mechanisms of ion chnanels & transporters studied by integration of structural and electrophysiological methods.

  • Holden Maecker

    Holden Maecker

    Professor (Research) of Microbiology and Immunology

    Current Research and Scholarly InterestsI'm interested in immune monitoring of T cell responses to chronic pathogens and cancer, and the correlation of T cell response signatures with disease protection.

  • Vinit B. Mahajan, MD, PhD

    Vinit B. Mahajan, MD, PhD

    Professor of Ophthalmology

    Current Research and Scholarly InterestsOur focus is the development of personalized medicine for eye diseases through translation of our discoveries in proteomics, genomics, and phenomics in humans, mice and tissue culture models.

  • Robert Malenka

    Robert Malenka

    Nancy Friend Pritzker Professor of Psychiatry and Behavioral Sciences
    On Leave from 11/01/2023 To 10/31/2025

    Current Research and Scholarly InterestsLong-lasting changes in synaptic strength are important for the modification of neural circuits by experience. A major goal of my laboratory is to elucidate the molecular events that trigger various forms of synaptic plasticity and the modifications in synaptic proteins that are responsible for the changes in synaptic efficacy.

  • Rachel Manber, PhD

    Rachel Manber, PhD

    Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology-Adult)

    Current Research and Scholarly InterestsRecent and current projects include
    Treatment of insomnia during pregnancy
    Treatment of insomnia comorbid with sleep apnea
    Use of digital interventions for insomnia among middle age and older adults
    Mobile intervention for insomnia among those with alcohol use

  • Jessie (Kittle) Markovits

    Jessie (Kittle) Markovits

    Clinical Associate Professor, Medicine
    Clinical Associate Professor (By courtesy), Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsHypnosis for perioperative symptom management in elective orthopedic surgery.

  • Nicole Martinez-Martin

    Nicole Martinez-Martin

    Assistant Professor (Research) of Pediatrics (Biomedical Ethics)

    Current Research and Scholarly InterestsNIH/National Institute of Mental Health
    K01 MH118375-01A1
    “Ethical, Legal and Social Implications in the Use of Digital Technology for Mental Health Applications”

    Greenwall Foundation Making a Difference in Bioethics Grant
    “Ethical, Legal and Social Implications of Digital Phenotyping”

  • Tarik F. Massoud, MD, PhD

    Tarik F. Massoud, MD, PhD

    Professor of Radiology (Neuroimaging and Neurointervention)

    Current Research and Scholarly InterestsMy current interests are in molecular and translational imaging of the brain especially in neuro-oncology and cerebrovascular diseases, experimental aspects of neuroimaging, clinical neuroradiology, neuroradiological anatomy, and research education and academic training of radiologists and scientists.

  • Jay McClelland

    Jay McClelland

    Lucie Stern Professor in the Social Sciences, Professor of Psychology and, by courtesy, of Linguistics and of Computer Science
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsMy research addresses topics in perception and decision making; learning and memory; language and reading; semantic cognition; and cognitive development. I view cognition as emerging from distributed processing activity of neural populations, with learning occurring through the adaptation of connections among neurons. A new focus of research in the laboratory is mathematical cognition and reasoning in humans and contemporary AI systems based on neural networks.

  • Susan K. McConnell

    Susan K. McConnell

    Susan B. Ford Professor, Emerita

    Current Research and Scholarly InterestsSusan McConnell has studied the cellular and molecular mechanisms that underlie the development of the mammalian cerebral cortex. Her work focused on the earliest events that pattern the developing forebrain, enable neural progenitors to divide asymmetrically to generate young neurons, propel the migration of postmitotic neurons outward into their final positions, and sculpt the fates and phenotypes of the neurons as they differentiate.

  • Uel Jackson McMahan

    Uel Jackson McMahan

    Professor of Neurobiology and of Structural Biology, Emeritus

    Current Research and Scholarly InterestsWe are currently investigating mechanisms involved in synaptic transmission and synaptogenesis using electron microscope tomography in ways that provide in situ 3D structural information at macromolecular resolution.

  • Jennifer A McNab

    Jennifer A McNab

    Associate Professor (Research) of Radiology (Radiological Sciences Laboratory)

    Current Research and Scholarly InterestsMy research is focused on developing magnetic resonance imaging (MRI) methods that probe brain tissue microstructure. This requires new MRI contrast mechanisms, strategic encoding and reconstruction schemes, physiological monitoring, brain tissue modeling and validation. Applications of these methods include neuronavigation, neurosurgical planning and the development of improved biomarkers for brain development, degeneration, disease and injury.

  • Kimford Meador, MD

    Kimford Meador, MD

    Professor of Neurology (Adult Neurology)

    BioDr. Meador is a Professor of Neurology and Neurosciences at Stanford University, and Clinical Director, Stanford Comprehensive Epilepsy Center. Dr. Meador graduated from the Georgia Institute of Technology in Applied Biology (with high honor) and received his MD from the Medical College of Georgia. After an internship at the University of Virginia and service as an officer in the Public Health Corps, he completed a residency in Neurology at the Medical College of Georgia and a fellowship in Behavioral Neurology at the University of Florida. Dr. Meador joined the faculty at the Medical College of Georgia (1984-2002) where he became the Charbonnier Professor of Neurology. He was the Chair of Neurology at Georgetown University (2002-2004), the Melvin Greer Professor of Neurology and Neuroscience at the University of Florida (2004-2008) where he served as Director of Epilepsy Program and Director of the Clinical Alzheimer Research Program, and Professor of Neurology and Pediatrics at Emory University (2008-2013) where he served as Director of Epilepsy and of Clinical Neurocience Research. He joined the faculty of Stanford University in 2013. Dr. Meador has authored over 400 peer-reviewed publications. His research interests include: cognitive mechanisms (e.g., memory and attention); cerebral lateralization; pharmacology and physiology of cognition; mechanisms of perception, consciousness and memory; EEG; epilepsy; epilepsy and pregnancy; preoperative evaluation for epilepsy surgery; intracarotid amobarbital procedure (i.e., Wada test); functional imaging; therapeutic drug trials; neurodevelopmental effects of antiepileptic drugs; psychoimmunology; behavioral disorders (e.g., aphasia, neglect, dementia); and neuropsychiatric disorders. Dr. Meador has served as the PI for a long running NIH multicenter study of pregnancy outcomes in women with epilepsy and their children. Dr. Meador has served on the editorial boards for Clinical Neurophysiology, Epilepsy and Behavior, Epilepsy Currents, Journal of Clinical Neurophysiology, Neurology, Cognitive and Behavioral Neurology, and Epilepsy.com. His honors include Resident Teaching Award Medical College of Georgia; Outstanding Young Faculty Award in Clinical Sciences Medical College of Georgia; Distinguished Faculty Award for Clinical Research Medical College of Georgia Lawrence C. McHenry History Award American Academy of Neurology; Dreifuss Abstract Award American Epilepsy Society; Fellow of the American Neurological Association; Diplomat of American Neurologic Association; past Chair of the Section of Behavioral Neurology of American Academy of Neurology; past President of Society for Cognitive and Behavioral Neurology; past President of the Society for Behavioral & Cognitive Neurology; past President of the Southern EEG & Epilepsy Society; ranking in the top 10 experts in epilepsy worldwide by Expertscape; Distinguished Alumnus Award for Professional Achievement, Medical College of Georgia, Georgia Regents University 2015; American Epilepsy Society Clinical Research Award; and named award by the American Epilepsy Society: “Kimford J. Meador Research in Women with Epilepsy Award,” and ranked in the top 500 neuroscientist in the world and top 300 in USA by Research.com in 2022.

  • Elizabeth Mellins

    Elizabeth Mellins

    Member, Bio-X

    Current Research and Scholarly InterestsMolecular mechanisms and intracellular pathways of MHC class II antigen processing and presentation, with a focus on B cells; mechanisms underlying HLA allele association with disease; disease mechanisms in systemic juvenile idiopathic arthritis, including an HLA-linked complication; monocytes as drivers or suppressors of auto-inflammation in systemic juvenile idiopathic arthritis and pediatric acute neuropsychiatric syndrome.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Vinod Menon

    Vinod Menon

    Rachael L. and Walter F. Nichols, MD, Professor and Professor, by courtesy, of Education and of Neurology

    Current Research and Scholarly InterestsEXPERIMENTAL, CLINICAL AND THEORETICAL SYSTEMS NEUROSCIENCE

    Cognitive neuroscience; Systems neuroscience; Cognitive development; Psychiatric neuroscience; Functional brain imaging; Dynamical basis of brain function; Nonlinear dynamics of neural systems.

  • Emmanuel Mignot, MD, PhD

    Emmanuel Mignot, MD, PhD

    Craig Reynolds Professor of Sleep Medicine and Professor, by courtesy, of Genetics and of Neurology

    Current Research and Scholarly InterestsThe research focus of the laboratory is the study of sleep and sleep disorders such as narcolepsy and Kleine Levin syndrome. We also study the neurobiological and genetic basis of the EEG and develop new tools to study sleep using nocturnal polysomnography. Approaches mostly involve human genetic studies (GWAS, sequencing), EEG signal analysis (deep learning), and immunology (narcolepsy is an autoimmune disease of the brain). We also work on autoimmune encephalitis.

  • Arnold Milstein

    Arnold Milstein

    Professor of Medicine (General Medical Discipline)

    Current Research and Scholarly InterestsDesign national demonstration of innovations in care delivery that provide more with less. Informed by research on AI-assisted clinical workflow, positive value outlier analysis and triggers of loss aversion bias among patients and clinicians.

    Research on creation of a national index of health system productivity gain.

  • Daria Mochly-Rosen

    Daria Mochly-Rosen

    George D. Smith Professor of Translational Medicine

    Current Research and Scholarly InterestsTwo areas: 1. Using rationally-designed peptide inhibitors to study protein-protein interactions in cell signaling. Focus: protein kinase C in heart and large GTPases regulating mitochondrial dynamics in neurodegdenration. 2. Using small molecules (identified in a high throughput screens and synthetic chemistry) as activators and inhibitors of aldehyde dehydrogenases, a family of detoxifying enzymes, and glucose-6-phoshate dehydrogenase, in normal cells and in models of human diseases.

  • W. E. Moerner

    W. E. Moerner

    Harry S. Mosher Professor

    Current Research and Scholarly InterestsLaser spectroscopy and microscopy of single molecules to probe biological systems, one biomolecule at a time. Primary thrusts: fluorescence microscopy far beyond the optical diffraction limit (PALM/STORM/STED), methods for 3D optical microscopy in cells, and trapping of single biomolecules in solution for extended study. We explore protein localization patterns in bacteria, structures of amyloid aggregates in cells, signaling proteins in the primary cilium, and dynamics of DNA and RNA.

  • Michelle Monje

    Michelle Monje

    Milan Gambhir Professor of Pediatric Neuro-Oncology and Professor, by courtesy, of Neurosurgery, of Pediatrics, of Pathology and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsThe Monje Lab studies the molecular and cellular mechanisms of postnatal neurodevelopment. This includes microenvironmental influences on neural precursor cell fate choice in normal neurodevelopment and in disease states.

  • Andrea Montanari

    Andrea Montanari

    John D. and Sigrid Banks Professor and Professor of Mathematics

    BioI am interested in developing efficient algorithms to make sense of large amounts of noisy data, extract information from observations, estimate signals from measurements. This effort spans several disciplines including statistics, computer science, information theory, machine learning.
    I am also working on applications of these techniques to healthcare data analytics.

  • Thomas Montine, MD, PhD

    Thomas Montine, MD, PhD

    Stanford Medicine Professor of Pathology

    BioDr. Montine received his education at Columbia University (BA in Chemistry), the University of Rochester (PhD in Pharmacology), and McGill University (MD and CM). His postgraduate medical training was at Duke University, and he was junior faculty at Vanderbilt University where he was awarded the Thorne Professorship in Pathology. In 2002, Dr. Montine was appointed as the Alvord Endowed Professor in Neuropathology and Director of the Division of Neuropathology at the University of Washington. He was Director of the University of Washington Alzheimer’s Disease Research Center, one of the original 10 Centers in the US, and passed that responsibility to able colleagues. Dr. Montine was the founding Director of the Pacific Udall Center, a NINDS-funded Morris K. Udall Centers of Excellence for Parkinson’s Disease Research. In 2010, Dr. Montine was appointed Chair of the Department of Pathology at the University of Washington. In 2016, Dr. Montine was appointed Chair of the Department of Pathology at Stanford University where he is the Stanford Medicine Endowed Professor in Pathology.

    The focus of the Montine Laboratory is on the structural and molecular bases of cognitive impairment. The Montine Laboratory addresses this prevalent, unmet medical need through a combination of neuropathology, biomarkers for detection and progression of early disease, and experimental studies that test hypotheses concerning specific mechanisms of neuron injury and then develop novel approaches to neuroprotection. Our current approaches include small molecule precision therapeutics and cell replacement strategies for brain.

  • Tirin Moore

    Tirin Moore

    Ben Barres Professor

    Current Research and Scholarly InterestsWe study neural mechanisms of visual-motor integration and the neural basis of cognition (e.g. attention). We study the activity of single neurons in visual and motor structures within the brain, examine how perturbing that activity affects neurons in other brain structures, and also how it affects the perceptual and

  • Elizabeth Mormino

    Elizabeth Mormino

    Assistant Professor (Research) of Neurology (Neurology Research Faculty)

    BioDr. Beth Mormino completed a PhD in Neuroscience at UC Berkeley in the laboratory of Dr. William Jagust, where she performed some of the initial studies applying Amyloid PET with the tracer PIB to clinically normal older individuals. This initial work provided evidence that the pathophysiological processes of Alzheimer’s disease begin years before clinical symptoms and are associated with subtle changes to brain regions critical for memory. During her postdoctoral fellowship with Drs. Reisa Sperling and Keith Johnson at Massachusetts General Hospital she used multimodal imaging techniques to understand longitudinal cognitive changes among individuals classified as preclinical AD. In 2017, Dr. Mormino joined the faculty at Stanford University in the department of Neurology and Neurological Sciences. Her research program focuses on combining imaging and genetics to predict cognitive trajectories over time, and the integration of novel PET scans to better understand human aging and neurodegenerative diseases.

  • Michael Moseley

    Michael Moseley

    Professor of Radiology (Radiological Sciences Lab)

    Current Research and Scholarly InterestsMR physics into tissue contrast mechanisms such as diffusion, perfusion, and functional imaging describes the research direction. Applications of cerebral stroke (brain attacks) and neurocognitive disorders are also being developed from these methods

  • Heather E. Moss, MD, PhD

    Heather E. Moss, MD, PhD

    Professor of Ophthalmology and of Neurology

    Current Research and Scholarly InterestsI am a clinician scientist with a background in engineering, epidemiology and neuro-ophthalmology. In my research, I combine tools from these disciplines with the goal of understanding and preventing vision loss from optic nerve diseases. My focus is on papilledema, the swelling of the optic nerve head due to elevation in intracranial pressure, which we are characterizing using electrophysiological and imaging techniques. Other areas of interest are peri-operative vision loss and optic neuritis.

  • Philippe Mourrain

    Philippe Mourrain

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)

    BioExpertise: Neurobiology, Sleep sciences, Molecular Genetics, Developmental Biology, Gene Silencing/Epigenetics

    Methodology: Synapse Imaging (Two photon microscopy, Array Tomography), Calcium Imaging (Light Sheet Microscopy/SPIM, Light Field Microscopy), Optogenetics, CLARITY, Tol2 transgenesis, TALENs, CRISPR/Cas9, Video tracking and behavior computation.

  • Prithvi Mruthyunjaya, MD, MHS

    Prithvi Mruthyunjaya, MD, MHS

    Professor of Ophthalmology and, by courtesy, of Radiation Oncology

    Current Research and Scholarly InterestsDr Mruthyunjaya has maintained a broad research interest with publications in both ocular oncology and retinal diseases.
    His focus is on multi-modal imaging of ocular tumors and understanding imaging clues that may predict vision loss after ocular radiation therapy. He coordinates multi-center research on the role of genetic testing and outcomes of treatments of ocular melanoma.
    In the field of retinal diseases, his interests are in intra-operative imaging to enhance surgical accuracy.

  • David Myung, MD, PhD

    David Myung, MD, PhD

    Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
    Mesenchymal stem cell therapy for corneal and ocular surface regeneration
    Engineered biomolecule therapies for promote corneal wound healing

    Telemedicine in ophthalmology

  • Claude M. Nagamine, DVM, PhD

    Claude M. Nagamine, DVM, PhD

    Associate Professor of Comparative Medicine
    On Partial Leave from 02/01/2024 To 08/31/2024

    Current Research and Scholarly InterestsMouse models to study murine and human infectious diseases. These colloborative studies include dengue virus, zika virus, adeno-associated virus, coxsackie virus, enterovirus 71, enterohepatic helicobacters, campylobacters, and anaplasma.

  • William Newsome

    William Newsome

    Harman Family Provostial Professor and Professor of Neurobiology and, by courtesy, of Psychology

    Current Research and Scholarly InterestsNeural processes that mediate visual perception and visually-based decision making. Influence of reward history on decision making.

  • Quan Dong Nguyen, MD, MSc

    Quan Dong Nguyen, MD, MSc

    Professor of Ophthalmology and, by courtesy, of Pediatrics and of Medicine (Immunology & Rheumatology)

    Current Research and Scholarly InterestsWe have focused our research on the development of novel therapies and innovative assessment and diagnostic imaging technologies for retinal vascular and ocular inflammatory disorders, specifically diabetic retinopathy (DR), age-related macular degeneration (AMD) and uveitis. Building on our initial work describing the role of hypoxia and vascular endothelial growth factor (VEGF) in diabetic retinopathy (DR) and diabetic macular edema (DME), We have become interested in the biochemical mechanisms that would presumably lead to DME. During the past decade, our research has contributed to the body of evidences that defines the important role of anti-VEGF therapies in DME and AMD, as well as the role of the mTOR pathway and various interleukins in the pathogenesis of uveitis.

    We have launched a productive and well-funded clinical research program while at the same time providing clinical care to patients with uveitis and retinal vascular diseases and fulfilling significant teaching and administrative assignments. We have established a number of key collaborators both within and outside the institutions. In addition, we have also established Center in Baltimore and now in Silicon Valley, which has excelled in conducting proof-of concept, early-phase multi-center clinical trials and studies, exploring the clinical disease manifestations and the efficacy of various pharmacologic agents in retinal, uveitic, and ocular inflammatory disorders.