Independent Labs, Institutes, and Centers (Dean of Research)


Showing 1-50 of 141 Results

  • Nicholas Haber

    Nicholas Haber

    Assistant Professor of Education

    Current Research and Scholarly InterestsI use AI models of of exploratory and social learning in order to better understand early human learning and development, and conversely, I use our understanding of early human learning to make robust AI models that learn in exploratory and social ways. Based on this, I develop AI-powered learning tools for children, geared in particular towards the education of those with developmental issues such as the Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder, in the mold of my work on the Autism Glass Project. My formal graduate training in pure mathematics involved extending partial differential equation theory in cases involving the propagation of waves through complex media such as the space around a black hole. Since then, I have transitioned to the use of machine learning in developing both learning tools for children with developmental disorders and AI and cognitive models of learning.

  • Stephen Haber

    Stephen Haber

    A.A. and Jeanne Welch Milligan Professor, Senior Fellow at the Hoover Institution and at the Stanford Institute for Economic Policy Research, Professor of History and, by courtesy, of Economics

    BioStephen Haber is the A.A. and Jeanne Welch Milligan Professor in the School of Humanities and Sciences at Stanford University, the Peter and Helen Bing Senior Fellow at the Hoover Institution, and senior fellow at the Stanford Institute for Economic Policy Research. In addition, he is a professor of political science, professor of history, and professor of economics (by courtesy).

    Haber has spent his career investigating why the world distribution of income so uneven. His papers have been published in economics, history, political science, and law journals.
    He is the author of five books and the editor of six more. Haber’s most recent books include Fragile by Design with Charles Calomiris (Princeton University Press), which examines how governments and industry incumbents often craft banking regulatory policies in ways that stifle competition and increase systemic risk. The Battle Over Patents (Oxford University Press), a volume edited with Naomi Lamoreaux, documents the development of US-style patent systems and the political fights that have shaped them.

    His latest project focuses on a long-standing puzzle in the social sciences: why are prosperous democracies not randomly distributed across the planet, but rather, are geographically clustered? Haber and his coauthors answer this question by using geospatial tools to simulate the ecological conditions that shaped pre-industrial food production and trade. They then employ machine learning methods to elucidate the relationship between ecological conditions and the levels of economic development that emerged across the globe over the past three centuries.

    Haber holds a Ph.D. in history from UCLA and has been on the Stanford faculty since 1987.
    From 1995 to 1998, he served as associate dean for the social sciences and director of Graduate Studies of Stanford’s School of Humanities and Sciences. He is among Stanford’s most distinguished teachers, having been awarded every teaching prize Stanford has to offer.

  • Lynette Renae Haberman

    Lynette Renae Haberman

    Program Manager, Student Programs and Training, Sarafan ChEM-H

    Current Role at StanfordProgram Manager, Student Programs and Training

  • Francois Haddad

    Francois Haddad

    Clinical Professor, Medicine - Cardiovascular Medicine

    BioDr. Francois Haddad, MD is a Clinical Professor of Medicine that specializes in the field of cardio-vascular imaging, pulmonary hypertension, advanced heart failure and transplantation. Dr. Haddad has over 18 years of practice in the field of cardiology. He directs Stanford Cardiovascular Institute Biomarker and Phenotypic Core Laboratory dedicated to translational studies in cardiovascular medicine. The laboratory focuses on (1) identifying early biomarkers of heart failure and aging, (2) bioengineering approaches to cardiovascular disease modeling and (3) novel informatic approach for the detection and risk stratification of disease. He is involved is several precision medicine initiatives in health including the Project Baseline, the Integrated Personalized Omics Profiling Initiative, the Athletic screening program at Stanford and the Strong-D cardiac rehabilitation initiative in individuals with diabetes mellitus.

  • Elizabeth Hadly

    Elizabeth Hadly

    Paul S. and Billie Achilles Professor of Environmental Biology and Professor of Earth System Science, Emerita

    Current Research and Scholarly InterestsElizabeth Hadly and her lab probe how perturbations such as climatic change and human modification of the environment influence the evolution and ecology of animals.

  • Jens Hainmueller

    Jens Hainmueller

    Kimberly Glenn Professor and Professor of Political Science

    BioJens Hainmueller is the Kimberly Glenn Professor of Political Science and Director of Graduate Studies in Stanford University’s Department of Political Science. He co-directs the Stanford Immigration Policy Lab and is a Faculty Affiliate at the Stanford Center for Causal Science, the Institute for Human-Centered Artificial Intelligence, and the Europe Center. He is also a member of the Maternal & Child Health Research Institute at Stanford’s School of Medicine.

    Hainmueller’s research spans statistical methods, causal inference, immigration, and political economy, and he has published nearly 70 articles with over 40,000 citations. Many of his works appear in top journals, including Science, Nature, and PNAS, as well as leading field journals in political science, statistics, economics, and business.

    He has developed widely adopted statistical methods—such as synthetic control methods, entropy balancing, Average Marginal Component Effects, and GeoMatch algorithms—and created several open-source software packages that support empirical research across disciplines. At Stanford, he teaches courses on causal inference and data science.

    Hainmueller’s contributions have earned him prestigious awards, including the Gosnell Prize for Excellence in Political Methodology, the Warren Miller Prize, the Robert H. Durr Award, and the Emerging Scholar Award from the Society of Political Methodology. He is an Andrew Carnegie Fellow, an elected Fellow of the Society of Political Methodology, and holds an honorary degree from the European University Institute (EUI).

    He earned his PhD from Harvard University, with additional studies at the London School of Economics, Brown University, and the University of Tuebingen. Before joining Stanford, he was a faculty member at the Massachusetts Institute of Technology (MIT).

    For a full list of his publications, please refer to his Google Scholar Citation Page and CV.

  • Lou Halamek

    Lou Halamek

    Professor of Pediatrics (Neonatology) and, by courtesy, of Obstetrics and Gynecology

    Current Research and Scholarly Interests1. development of hospital operations centers coupled with sophisticated simulation capabilities
    2. re-creation of near misses and adverse events
    3. optimizing human and system performance during resuscitation
    4. optimizing pattern recognition and situational awareness at the bedside
    5. evaluation and optimization of debriefing
    6. patient simulator design

  • Andrew Hall

    Andrew Hall

    Davies Family Professor, Senior Fellow at the Hoover Institution, at the Stanford Institute for Economic Policy Research and Professor, by courtesy, of Political Science

    BioAndrew Hall is a Professor of Political Economy at the Graduate School of Business and a Professor of Political Science. He is the co-director of the Democracy & Polarization Lab and a Senior Fellow at the Stanford Institute for Economic Policy Research. Hall combines large-scale quantitative datasets with tools from economics, statistics, and machine learning to understand how to design democratic systems of governance, with a focus on American elections and legislatures as well as the governance of online communities.

  • Scott S. Hall, Ph.D

    Scott S. Hall, Ph.D

    Professor of Psychiatry and Behavioral Sciences (Child and Adolescent Psychiatry and Child Development)

    Current Research and Scholarly InterestsMy primary area of scholarly and clinical interest is the pathogenesis of problem behaviors shown by individuals diagnosed with intellectual and developmental disabilities (IDD), particularly those with neurogenetic forms of IDD, such as fragile X syndrome, Cornelia de Lange syndrome and Prader-Willi syndrome. My work aims to both advance understanding of these disorders and to identify effective new treatment approaches for pediatric and adult patient populations by state-of-the-art methodologies, such as brain imaging, eye tracking and functional analysis to determine how environmental and biological factors affect the development of aberrant behaviors in these syndromes. The end goal of my research is to create patient-specific methods for treating the symptoms of these disorders.

  • Joachim Hallmayer

    Joachim Hallmayer

    Professor of Psychiatry and Behavioral Sciences (Child and Adolescent Psychiatry and Child Development)
    On Partial Leave from 09/01/2024 To 08/31/2026

    Current Research and Scholarly InterestsPrincipal Investigator
    Infrastructure to facilitate discovery of autism genes
    The purpose of this project is to facilitate the discovery of the genes that contribute autism by maintaining an infrastructure which research groups studying the genetics of autism can work collaboratively. This will be
    accomplished through workshops, a Virtual Private Network, and access to a database that includes phenotype and genotype data from all participating groups.

    Principal Investigator
    A California Population-Based Twin Study of Autism
    This will address several fundamental questions: (1) What is the heritability of autism (2) What is the contribution of genetic factors to variation in symptom dimensions? (3) Is there a continuum between the quantitative neurocognitive traits and clinical disorder? (4) What proportion of the variance in the neurocognitive traits is accounted for by genetic and non-genetic factors?

    Co-Investigator
    Center for Integrating Ethics in Genetics Research(Cho)
    The goal of this project is to serve as a center of excellence in neurogenetics research, to develop a national model for bench, to bedside research ethics consultation, and to provide training opportunity in biomedical ethics.

    Co-Investigator
    Gene, Brain and Behavior in Turner Syndrome(Reiss)
    The primary objective of this project is to use advanced, multi-modal magnetic resonance imaging (MRI) techniques, analyses of X chromosome parent-of-origin and cognitive-behavioral assessment to elucidate the effects of monosomy and X-linked imprinting on neurodevelopment and neural function in a large cohort of young girls with Turner syndrome, pre-estrogen replacement.

    Project Director
    Project F: Genomic Analysis in narcolepsy cataplexy
    The goal of the project is to locate genes outside the HLA region that influence susceptibility to narcolepsy. In order to localize these genes we will carry out a linkage and association study in the most extensive world-wide collection of DNAs from well-characterized patients with narcolepsy and their families.

  • May Han, MD

    May Han, MD

    Associate Professor of Neurology and Neurological Sciences (Adult Neurology)
    On Leave from 10/01/2024 To 04/30/2025

    Current Research and Scholarly InterestsMultiple sclerosis
    Neuromyelitis optica
    Autoimmune CNS disorders

  • Summer Han

    Summer Han

    Associate Professor (Research) of Neurosurgery, of Medicine (Biomedical Informatics) and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly InterestsMy current research focuses on understanding the genetic and environmental etiology of complex disease and developing and evaluating efficient screening strategies based on etiological understanding. The areas of my research interests include statistical genetics, molecular epidemiology, cancer screening, health policy modeling, and risk prediction modeling. I have developed various statistical methods to analyze high-dimensional data to identify genetic and environmental risk factors and their interactions for complex disease.

  • Philip C. Hanawalt

    Philip C. Hanawalt

    Dr. Morris Herzstein Professor in Biology, Emeritus

    Current Research and Scholarly InterestsMy current interest includes two principal areas:

    1. The molecular basis for diseases in which the pathway of transcription-coupled DNA repair is defective, including Cockyne syndrome (CS) and UV-sensitive syndrome (UVSS). Patients are severely sensitive to sunlight but get no cancers. See Hanawalt & Spivak, 2008, for review.

    2. Transcription arrest by guanine-rich DNA sequences and non-canonical secondary structures. Transcription collisions with replication forks.

  • Ronald Hanson

    Ronald Hanson

    Clarence J. and Patricia R. Woodard Professor of Mechanical Engineering

    Current Research and Scholarly InterestsProfessor Hanson has been an international leader in the development of laser-based diagnostic methods for combustion and propulsion, and in the development of modern shock tube methods for accurate determination of chemical reaction rate parameters needed for modeling combustion and propulsion systems. He and his students have made several pioneering contributions that have impacted the pace of propulsion research and development worldwide.

  • Eric Hanushek

    Eric Hanushek

    Paul and Jean Hanna Senior Fellow at the Hoover Institution and Professor, by courtesy, of Education

    BioEric Hanushek is the Paul and Jean Hanna Senior Fellow at the Hoover Institution of Stanford University. He is internationally recognized for his economic analysis of educational issues, and his research has broadly influenced education policy in both developed and developing countries. In recognition of his outstanding contributions to the field, he was awarded the prestigious Yidan Prize for Education Research in 2021. His extensive and well-cited body of work encompasses many pivotal topics within education, including class size reduction, school accountability, and teacher effectiveness. His pioneering exploration into teacher effectiveness, quantified through students' learning gains, laid the foundation for the widespread adoption of value-added measures in evaluating educators and institutions. His seminal book, The Knowledge Capital of Nations: Education and the Economics of Growth, establishes the close relationship between a nation's long-term economic growth and the skill levels of its populace. His scholarly contributions include twenty-six books and over 300 articles contributing to knowledge within the field. He is a Distinguished Graduate of the United States Air Force Academy and completed his Ph.D. in economics at the Massachusetts Institute of Technology. (https://hanushek.stanford.edu/)

  • Nicos Haralabidis

    Nicos Haralabidis

    Postdoctoral Scholar, Bioengineering

    BioMy research interests lie within both sports and clinical biomechanics applications. I rely upon merging conventional biomechanical in vivo measurements together with state-of-the-art musculoskeletal modeling and optimal control simulation approaches. The integrative approach I take enables me to understand how an individual may run faster, jump further, walk following surgery or intervention, and simultaneously estimate internal body dynamics noninvasively. As a Postdoctoral Research Scholar within the Wu Tsai Human Performance Alliance I aim to explore how stochastic optimal control and reinforcement learning methods can be applied to further our understanding of sporting performance.

  • Gabriella M. Harari

    Gabriella M. Harari

    Assistant Professor of Communication

    BioGabriella Harari is an Assistant Professor in the Department of Communication at Stanford University, where she directs the Media and Personality Lab.

    She studies how personality is expressed in the physical and digital contexts of everyday life. Much of her research is focused on understanding what digital technologies reveal about who we are, and how use of digital technologies shapes who we are. Her current projects analyze people’s everyday behavioral patterns (e.g., social interactions, mobility) and environmental contexts (e.g., places visited, social media platforms) to show how they are associated with individual differences in personality and well-being.

    Harari takes an ecological approach to conducting her research, emphasizing the importance of studying people and their behavior in natural contexts. To that end, she conducts intensive longitudinal field studies and is interested in mobile sensing methods and analytic techniques that combine approaches from the social and computer sciences. For example, methodologies she uses in her work in include surveys, experience sampling, longitudinal modeling, mobile sensing, data mining, and machine learning.

    Harari completed a Postdoctoral Fellowship and earned her PhD at the Department of Psychology at The University of Texas at Austin. She completed her BA in Psychology & Humanities from Florida International University, where she was also a Ronald E. McNair Scholar. Her work has been published in academic outlets such as Perspectives in Psychological Science, Journal of Personality and Social Psychology, and the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT). Her work has also been supported by the National Science Foundation and Stanford HAI Seed Grant Awards.

  • Pehr Harbury

    Pehr Harbury

    Associate Professor of Biochemistry

    Current Research and Scholarly InterestsScientific breakthroughs often come on the heels of technological advances; advances that expose hidden truths of nature, and provide tools for engineering the world around us. Examples include the telescope (heliocentrism), the Michelson interferometer (relativity) and recombinant DNA (molecular evolution). Our lab explores innovative experimental approaches to problems in molecular biochemistry, focusing on technologies with the potential for broad impact.

  • Antonio Hardan, M.D.

    Antonio Hardan, M.D.

    Professor of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsThe neurobiology of autism
    Neuroimaging in individuals with autism
    Psychopharmacological treatment of children and adults with autism and/or developmental disorders
    The neurobiology and innovative interventions of several neurogenic disorders including DiGeorge Syndrome (Velocardiofacial syndrome; 22q11.2 mutations), PTEN mutations, and Phelan McDermid Syndrome (22q13 mutations).

  • Brian A. Hargreaves

    Brian A. Hargreaves

    Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsI am interested in magnetic resonance imaging (MRI) applications and augmented reality applications in medicine. These include abdominal, breast and musculoskeletal imaging, which require development of faster, quantitative, and more efficient MRI methods that provide improved diagnostic contrast compared with current methods. My work includes novel excitation schemes, efficient imaging methods and reconstruction tools and augmented reality in medicine.

  • Keren Haroush

    Keren Haroush

    Assistant Professor of Neurobiology

    Current Research and Scholarly InterestsOur laboratory studies the mechanisms by which highly complex behaviors are mediated at the neuronal level, mainly focusing on the example of dynamic social interactions and the neural circuits that drive them. From dyadic interactions to group dynamics and collective decision making, the lab seeks a mechanistic understanding for the fundamental building blocks of societies, such as cooperation, empathy, fairness and reciprocity.

  • James Harris

    James Harris

    James and Elenor Chesebrough Professor in the School of Engineering, Emeritus

    BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. His early work in the 1970's demonstrating a practical heterojunction bipolar transistor led to their application in every mobile phone today and record setting solar cell efficiency. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.

  • Odette Harris, MD, MPH

    Odette Harris, MD, MPH

    Paralyzed Veterans of America Professor of Spinal Cord Injury Medicine

    Current Research and Scholarly InterestsTraumatic brain injury with a focus on epidemiology and outcomes.

  • Bard Harstad

    Bard Harstad

    David S. Lobel Professor in Business and Sustainability, Professor of Environmental Social Sciences, Senior Fellow at the Stanford Institute for Economic Policy Research and Professor, by courtesy, of Economics

    BioWith a PhD from Stockholm University, Harstad taught at Kellogg School of Management, Northwestern University, 2004-2012, and then at the University of Oslo 2012-2023, before joining the GSB in 2023. His fields include political economics, environmental economics, and applied theory. Specific research projects include the design of international agreements, trade agreements and climate agreements, supply-side environmental policies, and policies that motivate environmental conservation and reducing deforestation.

  • Sean Hartnoll

    Sean Hartnoll

    Principal Investigator, Stanford Institute for Materials and Energy Sciences

    BioI am a theorist working on problems in gravitational, high energy and condensed matter physics. In recent years the holographic correspondence, the physics of quantum entanglement and quantum field theory more generally have led to strong connections between central concerns in these different fields.

    For example, I am interested in understanding the emergence of spacetime from large N matrix quantum mechanics models. These can be thought of as the simplest models of holographic duality, and will likely hold the key to understanding the emergence of local physics as well as black holes. The most basic object in these theories is the ground state wavefunction. Understanding this wavefunction is a many-body problem and I am interested in using modern ideas from condensed matter theory -- such as topological order -- to characterize it.

    Another example has to do with dissipation. How quickly can a quantum mechanical system thermalize itself? From this perspective, there are remarkable similarities between strongly quantum mechanical systems such as the quark-gluon plasma and high temperature superconductors and the dynamics of black holes in classical gravity. This may suggest that a fundamental limitation imposed by quantum statistical mechanics is at work in these systems. I have pursued this possibility from many angles, including variational principles for entropy production, the Lieb-Robinson bound on velocities in quantum systems and bounds on the magnitude of quantum fluctuations near thermal equilibrium.

    In parallel to a ''bird's eye'' approach to quantum statistical mechanics, I am also increasingly interested in specific scattering mechanisms in unconventional materials that may give a relatively simple explanation of transport behavior that has otherwise been considered anomalous --- using this approach my collaborators and I have 'demystified' aspects of transport in quantum critical ruthenate materials. I am currently interested, for example, in the role of phonons in strongly correlated electronic systems.

    I have recently worked on black hole interiors in classical gravity. Black hole interiors are extremely rich mathematically, but their physical interpretation -- for example in a holographic context -- remains obscure. To start to address this question I have shown how important dynamics of the interior, such as the instability of the singularity and of Cauchy horizons, can be triggered in a relatively simple holographic setting.

    Lists of my publications and of recorded talks and lectures can be found following the links on the right.

  • Trevor Hastie

    Trevor Hastie

    John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences

    Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.

  • Robert Hawkins

    Robert Hawkins

    Assistant Professor of Linguistics

    BioI direct the Social Interaction & Language (SoIL) Lab at Stanford University. We're interested in the cognitive mechanisms that allow people to flexibly communicate, collaborate, and coordinate with one another. We work on these problems using large-scale, multi-player web experiments and computational models of language and social reasoning.

  • Melanie Hayden Gephart

    Melanie Hayden Gephart

    Professor of Neurosurgery and, by courtesy, of Neurology and Neurological Sciences

    BioI am a brain tumor neurosurgeon, treating patients with malignant and benign tumors, including gliomas, brain metastases, meningiomas, and schwannomas. I direct the Stanford Brain Tumor Center and the Stanford Brain Metastasis Consortium, collaborative unions of physicians and scientists looking to improve our understanding and treatment of brain tumors. My laboratory seeks greater understanding of the mechanisms driving tumorigenesis and disease progression in malignant brain tumors. We study how rare cancer cell populations survive and migrate in the brain, inadvertently supported by native brain cells. We develop novel cerebrospinal fluid-based biomarkers to track brain cancer treatment response, relapse, and neurotoxicity. Our bedside-to-bench-to-bedside research model builds on a foundation of generously donated patient samples, where we test mechanisms of brain cancer growth, develop novel pre-clinical models that reliably recapitulate the human disease, and facilitate clinical trials of new treatments for patients with brain cancer.

    www.GephartLab.com
    www.GBMseq.org
    https://stan.md/BrainMets
    @HaydenGephartMD

  • Sam Heft-Neal

    Sam Heft-Neal

    Senior Research Scholar

    BioSam Heft-Neal is a Senior Research Scholar at the Center on Food Security and the Environment. Sam is working to identify the impacts of environmental changes on health, agriculture, and food availability around the world. His recent work combines household surveys with remote sensing data to examine environmental drivers of child health. Sam holds a Ph.D. in Agricultural and Resource Economics from the University of California, Berkeley and a B.A. in Statistics and Economics from the same institution.