School of Engineering
Showing 181-200 of 710 Results
-
Daniel Bruce Ennis
Professor of Radiology (Veterans Affairs) and, by courtesy, of Bioengineering
BioDaniel Ennis {he/him} is a Professor in the Department of Radiology. As an MRI scientist for nearly twenty years, he has worked to develop advanced translational cardiovascular MRI methods for quantitatively assessing structure, function, flow, and remodeling in both adult and pediatric populations. He began his research career as a Ph.D. student in the Department of Biomedical Engineering at Johns Hopkins University during which time he formed an active collaboration with investigators in the Laboratory of Cardiac Energetics at the National Heart, Lung, and Blood Institute (NIH/NHLBI). Thereafter, he joined the Departments of Radiological Sciences and Cardiothoracic Surgery at Stanford University as a postdoc and began to establish an independent research program with an NIH K99/R00 award focused on “Myocardial Structure, Function, and Remodeling in Mitral Regurgitation.” For ten years he led a group of clinicians and scientists at UCLA working to develop and evaluate advanced cardiovascular MRI exams as PI of several NIH funded studies. In 2018 he returned to the Department of Radiology at Stanford University as faculty in the Radiological Sciences Lab to bolster programs in cardiovascular MRI. He is also the Director of Radiology Research for the Veterans Administration Palo Alto Health Care System where he oversees a growing radiology research program.
-
Anton Ermakov
Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Geophysics and of Earth and Planetary Sciences
Current Research and Scholarly InterestsI am interested in the formation and evolution of the Solar System bodies and the ways we can constrain planetary interiors by geophysical measurements.
-
Stefano Ermon
Associate Professor of Computer Science and Senior Fellow at the Woods Institute for the Environment
On Partial Leave from 10/01/2024 To 06/30/2025BioI am an Assistant Professor in the Department of Computer Science at Stanford University, where I am affiliated with the Artificial Intelligence Laboratory and a fellow of the Woods Institute for the Environment.
My research is centered on techniques for scalable and accurate inference in graphical models, statistical modeling of data, large-scale combinatorial optimization, and robust decision making under uncertainty, and is motivated by a range of applications, in particular ones in the emerging field of computational sustainability. -
Jonathan Fan
Associate Professor of Electrical Engineering
Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.
-
Judith Ellen Fan
Assistant Professor of Psychology, by courtesy, of Education and of Computer Science
BioI direct the Cognitive Tools Lab (https://cogtoolslab.github.io/) at Stanford University. Our lab aims to reverse engineer the human cognitive toolkit — in particular, how people use physical representations of thought to learn, communicate, and solve problems. Towards this end, we use a combination of approaches from cognitive science, computational neuroscience, and artificial intelligence.
-
Shanhui Fan
Joseph and Hon Mai Goodman Professor of the School of Engineering and Professor, by courtesy, of Applied Physics
BioFan's research interests are in fundamental studies of nanophotonic structures, especially photonic crystals and meta-materials, and applications of these structures in energy and information technology applications
-
Charbel Farhat
Vivian Church Hoff Professor of Aircraft Structures and Professor of Aeronautics and Astronautics
Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design, analysis, and digital twinning of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on reliable autonomous carrier landing in rough seas; dissipation of vertical landing energies through structural flexibility; nonlinear aeroelasticity of N+3 aircraft with High Aspect Ratio (HAR) wings; pulsation and flutter of a parachute; pendulum motion in main parachute clusters; coupled fluid-structure interaction (FSI) in supersonic inflatable aerodynamic decelerators for Mars landing; flight dynamics of hypersonic systems and their trajectories; and advanced digital twinning. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-component, multi-physics problems; discrete-event-free embedded boundary methods for CFD and FSI; efficient Bayesian optimization using physics-based surrogate models; modeling and quantifying model-form uncertainty; probabilistic, physics-based machine learning; mechanics-informed artificial neural networks for data-driven constitutive modeling; and efficient nonlinear projection-based model order reduction for time-critical applications such as design, active control, and digital twinning.
-
Kayvon Fatahalian
Associate Professor of Computer Science
BioKayvon Fatahalian is an Associate Professor in the Computer Science Department at Stanford University. Kayvon's research focuses on the design of systems for real-time graphics, high-efficiency simulation engines for applications in entertainment and AI, and platforms for the analysis of images and videos at scale.
-
Ron Fedkiw
Canon Professor in the School of Engineering
BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.
-
Vivian Feig
Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioThe Feig lab aims to develop low-cost, noninvasive, and widely-accessible medical technologies that integrate seamlessly with the human body. We accomplish this by developing functional materials and devices with dynamic mechanical properties, leveraging chemistry and physics insights to engineer novel systems at multiple length scales. In pursuit of our goals, we maintain a strong emphasis on integrity and diversity, while nurturing the intellectual curiosity and holistic growth of our team members as researchers, communicators, and leaders.
-
Jeffrey A. Feinstein, MD, MPH
Dunlevie Family Professor of Pulmonary Vascular Disease and Professor, by courtesy, of Bioengineering
Current Research and Scholarly InterestsResearch interests include (1) computer simulation and modeling of cardiovascular physiology with specific attention paid to congenital heart disease and its treatment, (2) the evaluation and treatment of pulmonary hypertension/pulmonary vascular diseases, and (3) development and testing of medical devices/therapies for the treatment of congenital heart disease and pulmonary vascular diseases.
-
Richard Fikes
Professor (Research) of Computer Science, Emeritus
BioRichard Fikes has a long and distinguished record as an innovative leader in the development of techniques for effectively representing and using knowledge in computer systems. He is best known as co-developer of the STRIPS automatic planning system, KIF (Knowledge Interchange Format), the Ontolingua ontology representation language and Web-based ontology development environment, the OKBC (Open Knowledge Base Connectivity) API for knowledge servers, and IntelliCorp's KEE system. At Stanford, he led projects focused on developing large-scale distributed repositories of computer-interpretable knowledge, collaborative development of multi-use ontologies, enabling technology for the Semantic Web, reasoning methods applicable to large-scale knowledge bases, and knowledge-based technology for intelligence analysts. He was principal investigator of major projects for multiple Federal Government agencies including the Defense Advanced Research Projects Agency (DARPA) and the Intelligence Community’s Advanced Research and Development Activity (ARDA).
-
Chelsea Finn
Assistant Professor of Computer Science and of Electrical Engineering
On Partial Leave from 10/01/2024 To 03/31/2025BioChelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University, and the William George and Ida Mary Hoover Faculty Fellow. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected experience, and meta-learning algorithms that can enable fast learning of new concepts and behaviors. Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.
Website: https://ai.stanford.edu/~cbfinn -
Michael Fischbach
Liu (Liao) Family Professor
Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.
1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.
2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:
Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?
Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?
3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing. -
Martin Fischer
Kumagai Professor in the School of Engineering
BioProfessor Fischer's research goals are to improve the productivity of project teams involved in designing, building, and operating facilities and to enhance the sustainability of the built environment. His work develops the theoretical foundations and applications for virtual design and construction (VDC). VDC methods support the design of a facility and its delivery process and help reduce the costs and maximize the value over its lifecycle. His research has been used by many small and large industrial government organizations around the world.