School of Engineering
Showing 1,401-1,500 of 7,076 Results
-
Gerwin Dijk
Postdoctoral Scholar, Materials Science and Engineering
BioBioelectronics, neurostimulation, biosensors, conducting polymers, microfabrication.
-
David Dill
Donald E. Knuth Professor in the School of Engineering, Emeritus
Current Research and Scholarly InterestsSecure and reliable blockchain technology at Facebook.
-
Katryna Dillard
Senior Program Manager, Program-Bao Z.
BioKatryna Dillard joined Stanford University in 2021 as the program manager for the Stanford Wearable Electronics (eWEAR) Initiative. As the program manager Katryna manages the logistics of annual symposiums, monthly seminars/newsletters, tracking and updating current affiliate member companies, and acts as a point of contact with affiliate members while providing administrative support. Prior to joining eWEAR Katryna worked in hotels at the front desk and events for 5 years. She graduated from Whittier College with a B.A. in Sociology and Theatre Communication Arts with an emphasis in Design and Technology.
-
Jennifer Dionne
Professor of Materials Science and Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
BioJennifer (Jen) Dionne is a Professor of Materials Science and Engineering and, by courtesy, of Radiology at Stanford. She is also a Chan Zuckerberg Biohub Investigator, deputy director of Q-NEXT (a DOE National Quantum Initiative), and co-founder of Pumpkinseed, a company developing quantum sensors to understand and optimize the immune system. From 2020-2023, Jen served as Stanford’s Inaugural Vice Provost of Shared Facilities, raising capital to modernize instrumentation, fund experiential education, foster staff development, and support new and existing users of the shared facilities. Jen received her B.S. degrees in Physics and Systems Science and Mathematics from Washington University in St. Louis, her Ph. D. in Applied Physics at the California Institute of Technology in 2009, and her postdoctoral training in Chemistry at Berkeley. As a pioneer of nanophotonics, she is passionate about developing methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her research has developed culture-free methods to detect pathogens and their antibiotic susceptibility; amplification-free methods to detect and sequence nucleic acids and proteins; and new methods to image light-driven chemical reactions with atomic-scale resolution. Jen’s work has been featured in NPR, the Economist, Science, and Nature, and recognized with the NSF Alan T. Waterman Award, a NIH Director’s New Innovator Award, a Moore Inventor Fellowship, and the Presidential Early Career Award for Scientists and Engineers. She was also featured on Oprah’s list of “50 Things that will make you say ‘Wow’!”. She also perceives outreach as a critical component of her role and frequently collaborates with visual and performing artists to convey the beauty of science to the broader public.
-
Varun Dolia
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2021
BioVarun Dolia is a Benchmark Fellow and a Ph.D. candidate in Prof. Jen Dionne's lab. He is excited about developing nanophotonic platforms for health and environmental monitoring.
-
Stefan P. Domino
Adjunct Professor, Institute for Computational and Mathematical Engineering (ICME)
BioDr. Domino’s research interest rests within low-Mach fluid mechanics methods development for complex systems that drive the coupling of mass, momentum, species and energy transport. His core research resides within the intersection of physics elucidation, numerical methods research, V&V techniques exploration, and high performance computing and coding methods for turbulent flow applications. Stefan also supports the teaching of ME469, Computational Methods in Fluid Mechanics, while continuing his primary career at Sandia National Laboratories as a Distinguished Member of the Technical Staff.
Education:
University of Utah
Ph.D. Department of Chemical Engineering, 1999
"Methods towards improved simulations for the oxides of nitrogen in pulverized-coal furnaces"
Professor Philip J. Smith, Advisor
Select Recent Publications:
* Domino, S. P., "On the subject of large-scale pool fires and turbulent boundary layer interactions", Phys. Fluids, 2024. (Featured)
* Domino, S. P., Wenzel, E. A, "A direct numerical simulation study for confined non-isothermal jet impingement at moderate nozzle-to-plate distances: capturing jet-to-ambient density effects", Int. J. Heat Mass Trans, 2023.
* Benjamin, M., Domino, S. P., Iaccarino, G., "Neural networks for large eddy simulations of wall-bounded turbulence: numerical experiments and challenges", Eur. Phys. J. E., 2023.
* Hubbard, J., Cheng, M., Domino, S. P., "Mixing in low-Reynolds number reacting impinging jets in crossflow", J. Fluids Engr., 2023.
* Domino, S. P. “Unstructured finite volume approaches for turbulence,” in Numerical Methods in Turbulence Simulation, edited by R. Moser (Elsevier, 2023), Ch. 7, pp. 285–317.
* Scott, S., Domino, S. P., "A computational examination of large-scale pool fires: variations in crosswind velocity and pool shape", Flow, 2022.
* Domino, S. P., Horne, W., "Development and deployment of a credible unstructured, six-DOF, implicit low-Mach overset simulation tool for wave energy applications", Renew. Energy, 2022.
* Hubbard, J., Hansen, M., Kirsch, J., Hewson, J., Domino, S. P., “Medium scale methanol pool fire model validation”, J. Heat Transfer, 2022.
* Barone, M., Ray, J., Domino, S. P., "Feature selection, clustering, and prototype placement for turbulence datasets", AIAA J., 2021,
* Domino, S. P., Hewson, J., Knaus, R., Hansen, M., "Predicting large-scale pool fire dynamics using an unsteady flamelet- and large-eddy simulation-based model suite", Phys. Fluids, 2021. (Editor's pick)
* Domino, S. P., "A case study on pathogen transport, deposition, evaporation and transmission: linking high-fidelity computational fluid dynamics simulations to probability of infection", Int. J. CFD, 2021.
* Domino, S. P., Pierce, F., Hubbard, J., "A multi-physics computational investigation of droplet pathogen transport emanating from synthetic coughs and breathing", Atom. Sprays, 2021.
* Jofre, L., Domino, S. P., Iaacarino, G., "Eigensensitivity analysis of subgrid-scale stresses in large-eddy simulation of a turbulent axisymmetric jet", Int. J. Heat Fluid Flow, 2019.
* Domino, S. P., Sakievich, P., Barone, M., "An assessment of atypical mesh topologies for low-Mach large-eddy simulation", Comp. Fluids, 2019.
* Domino, S. P., "Design-order, non-conformal low-Mach fluid algorithms using a hybrid CVFEM/DG approach ", J. Comput. Physics, 2018.
* Jofre, L., Domino, S. P., Iaacarino, G., "A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation Closures", Flow Turb. Combust., 2018.
CV: https://github.com/spdomin/Present/blob/master/cv/dominoCV.pdf -
Changxin Lyla Dong
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2022
BioLyla Dong is committed to advancing innovative materials solutions that address critical challenges in health and environmental sustainability. Her research spans multiple fields, including hydrogel development, materials characterization, and electrochemistry. As a PhD candidate at Stanford University advised by Professor Eric A. Appel, she focuses on creating cutting-edge materials to protect against wildfires and improve therapeutic delivery systems.
Prior to her studies at Stanford, Lyla conducted research under the mentorship of Professors Pulickel M. Ajayan and Haotian Wang at Rice University. She developed functional materials for batteries and explored technologies for carbon capture, discovering her passion for sustainable materials science.
Through her interdisciplinary approach, Lyla strives to bridge the critical intersections between health and environmental sustainability, creating solutions that have a real-world impact. -
Yiwen Dong
Postdoctoral Scholar, Computer Science
BioYiwen Dong is a postdoc fellow at the Stanford Institute of Human-Centered Artificial Intelligence (HAI). Her research interest is human behavior characterization and health monitoring through their interactions with the physical environment. Her current work focuses on human and animal health monitoring through gait-induced floor vibrations.
While buildings are traditionally considered as passive and indifferent, her works allow the buildings to be both self-aware and user-aware. Yiwen developed systems that utilize ambient structural vibrations to infer human behaviors and health status, which enables many smart building applications such as in-home patient monitoring and elder care, intruder prevention and occupant management, animal health monitoring, and welfare. She strives for the next-generation intelligent infrastructures by exploring the potential of structural monitoring for human-centered purposes.
Yiwen has an interdisciplinary background in civil engineering, electrical engineering, and AI. Yiwen received her Master’s degree in Structural Engineering at Stanford University and her Bachelor’s degree in civil engineering at Nanyang Technological University. She won various awards (Best Paper Award, runner-ups in competitions) in ubiquitous computing and cyber-physical system conferences. She is passionate about combining the physical knowledge from the living environments, sensing approaches from cyber-physical systems, and data-driven models from machine learning to infer people’s behavior patterns and health status. -
David Donoho
Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences
On Leave from 01/01/2025 To 03/31/2025BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.
Research Statement:
My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems. -
Siddharth Doshi
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2019
Masters Student in Materials Science and Engineering, admitted Winter 2025BioSiddharth is a PhD student in Materials Science at Stanford University, where he is a Meta PhD Fellow working with Mark Brongersma and Nicholas Melosh. His research is focused on developing electrically tunable active optical metasurfaces using soft polymers, enabling applications ranging from on-the-fly reconfigurable optical computing devices to wearable photonics. Previously, he received his Bachelor's degree in Engineering from the University of New South Wales (Sydney, Australia) and spent time in industry designing award-winning consumer products.
-
Jonathan Dotan
Program Coordinator, Electrical Engineering
Staff, Program-Weissman T.BioJonathan Dotan is the founding director of The Starling Lab at Stanford University and USC, where he leads applied research on the decentralized web and human rights. For over 20 years, he’s navigated the intersections of media, tech, and policy as a tech founder.
Jonathan is a fellow at Stanford’s Center for Blockchain Research and Compression Forum, where he is researching strategy and policy for distributed ledger technologies. His scholarship examines Internet governance frameworks, the transition to Web 3.0 and the prospects for a more decentralized internet.
He lectures at Stanford’s School of Engineering and Graduate School of Business. Jonathan’s teaching asks students to consider the never-simple relationship between innovation and progress — recognizing how each new technology brings choices and responsibilities. -
Persis Drell
Provost, Emerita, James and Anna Marie Spilker Professor, Professor of Materials Science and Engineering and of Physics
BioPersis Drell is the James and Anna Marie Spilker Professor in the School of Engineering, a professor of materials science and engineering, and a professor of physics. From Feb 1, 2017 to Sept. 30, 2023, Drell was the provost of Stanford University.
Prior to her appointment as provost in February 2017, she was dean of the Stanford School of Engineering from 2014 to 2017 and director of U.S. Department of Energy SLAC National Acceleratory Laboratory from 2007 to 2012.
She earned her bachelor’s degree in mathematics and physics from Wellesley College and her PhD in atomic physics from UC Berkeley. Before joining the faculty at Stanford in 2002, she was a faculty member in the physics department at Cornell University for 14 years. -
Leora Dresselhaus-Marais
Assistant Professor of Materials Science and Engineering, of Photon Science and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsMy group develops new methods to update old processes in metals manufacturing
-
Ron Dror
Cheriton Family Professor and Professor, by courtesy, of Structural Biology and of Molecular & Cellular Physiology
Current Research and Scholarly InterestsMy lab’s research focuses on computational biology, with an emphasis on 3D molecular structure. We combine two approaches: (1) Bottom-up: given the basic physics governing atomic interactions, use simulations to predict molecular behavior; (2) Top-down: given experimental data, use machine learning to predict molecular structures and properties. We collaborate closely with experimentalists and apply our methods to the discovery of safer, more effective drugs.
-
Shaul Druckmann
Associate Professor of Neurobiology, of Psychiatry and Behavioral Sciences and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsOur research goal is to understand how dynamics in neuronal circuits relate and constrain the representation of information and computations upon it. We adopt three synergistic strategies: First, we analyze neural circuit population recordings to better understand the relation between neural dynamics and behavior, Second, we theoretically explore the types of dynamics that could be associated with particular network computations. Third, we analyze the structural properties of neural circuits.
-
John Duchi
Associate Professor of Statistics, of Electrical Engineering and, by courtesy, of Computer Science
Current Research and Scholarly InterestsMy work spans statistical learning, optimization, information theory, and computation, with a few driving goals: 1. To discover statistical learning procedures that optimally trade between real-world resources while maintaining statistical efficiency. 2. To build efficient large-scale optimization methods that move beyond bespoke solutions to methods that robustly work. 3. To develop tools to assess and guarantee the validity of---and confidence we should have in---machine-learned systems.
-
Eric Dunham
Professor of Geophysics
On Leave from 01/01/2025 To 06/30/2025Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.
-
Alexander Dunn
Professor of Chemical Engineering
Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.