School of Engineering
Showing 101-200 of 410 Results
-
Sarah Fletcher
Assistant Professor of Civil and Environmental Engineering and Center Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsThe Fletcher Lab aims to advance water resources management to promote resilient and equitable responses to a changing world.
-
June Flora
Sr. Research Scholar
BioJune A. Flora, PhD, is a senior research scientist at Stanford University’s Human Sciences & Technologies Advanced Research Institute (HSTAR) in the Graduate School of Education, and the Solutions Science Lab in the Stanford School of Medicine. June's research focuses on understanding the drivers of human behavior change and the potential of communication interventions. The research is solution focused on behavior change relevant to health and climate change.
Most recently she is studying the role of energy use feedback delivered through motivationally framed online applications; the potential of children and youth delivered energy reduction interventions to motivate parent behavior change, and the effects of entertainment-education interventions to change behavior.
June earned her Ph.D. from Arizona State University in educational psychology. She has held faculty positions at University of Utah and Stanford University. -
Derek Fong
Sr Research Engineer, Civil and Environmental Engineering
Senior Research Engineer, Civil and Environmental Engineering
Staff, Civil and Environmental EngineeringBioDerek Fong's research in environmental and geophysical fluid dynamics focuses on understanding the fundamental transport and mixing processes in the rivers, estuaries and the coastal ocean. He employs different methods for studying such fluid processes including laboratory experiments, field experiments, and numerical modeling. His research projects include studying lateral dispersion, in stratified coastal flows, the fate and transport of freshwater in river plumes, advanced hydrodynamic measurement techniques, coherent structures in nearshore flows, bio-physical interactions in stratified lakes, fate of contaminated sediments, and secondary circulation and mixing in curved channels.
Derek teaches a variety of classes at both the undergraduate and graduate level. Some of the classes he has offered include Mechanics of Fluids; Rivers, Streams and Canals; Transport and Mixing in Surface Waters; Introduction to Physical Oceanography; Mechanics of Stratified Fluids; Dynamics of Lakes and Reservoirs; Science and Engineering Problem Solving using Matlab; the Future and Science of Water; Hydrodynamics and Geophysical Fluid Dynamics.
Prior to coming to Stanford, Derek spent five years at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution studying the dynamics of freshwater plumes for his doctoral thesis. He has also served as a senior lecturer at the University of Washington, Friday Harbor Laboratories in Friday Harbor, Washington. -
David Freyberg
Associate Professor of Civil and Environmental Engineering, Emeritus
Current Research and Scholarly InterestsMy students and I study sediment and water balances in aging reservoirs, collaborative governance of transnational fresh waters, the design of centralized and decentralized wastewater collection, treatment, and reuse systems in urban areas, and hydrologic ecosystem services in urban areas and in systems for which sediment production, transport, and deposition have significant consequences.
-
Oliver Fringer
Professor of Civil and Environmental Engineering and of Oceans
BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.
-
Renate Fruchter
Director of PBL Lab
Current Research and Scholarly InterestsCognitive demands on global learners, VR in teamwork, Sustainability, Wellbeing
-
Catherine Gorle
Associate Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsGorle's research focuses on the development of predictive flow simulations to support the design of sustainable buildings and cities. Specific topics of interest are the coupling of large- and small-scale models and experiments to quantify uncertainties related to the variability of boundary conditions, the development of uncertainty quantification methods for low-fidelity models using high-fidelity data, and the use of field measurements to validate and improve computational predictions.
-
Tess Hegarty
Ph.D. Student in Civil and Environmental Engineering, admitted Spring 2018
BioTess Hegarty is currently a PhD candidate in the Civil and Environmental Engineering Department, and she’s passionate about building decarbonization as a part of addressing the climate crisis. Her PhD thesis research explores the intersection of probabilistic life cycle assessment (LCA) metrics and industrialized construction through ongoing collaborations between industry and academia.
Her undergraduate degree focused on structures, architecture, and design via MIT's flexible 1-ENG program, and she spent her junior year studying abroad at the University of Cambridge. Directly after graduating from MIT, she started her MS/PhD at Stanford, with fellowship support from the NSF GRFP and SGF.
While at Stanford, she co-founded a volunteer student organization called Engineering Students for Diversity, Equity, and Inclusion (ES4DEI). She’s also interested in design thinking and has taken four d.school classes while at Stanford, including Designing (Ourselves) for Racial Justice, Transformative Design, Creativity in Research Scholars, and Print on Purpose. She enjoys applying her graphic design skills for Scientists Speak Up, a student organization dedicated to combatting science misinformation. -
Lynn Hildemann
Senior Associate Dean for Education and Professor of Civil and Environmental Engineering
BioLynn Hildemann's current research areas include the sources and dispersion of airborne particulate matter indoors, and assessment of human exposure to air pollutants.
Prof. Hildemann received BS, MS, and PhD degrees in environmental engineering science from the California Institute of Technology. She is an author on >100 peer-reviewed publications, including two with over 1000 citations each, and another 6 with over 500 citations each. She has been honored with Young Investigator Awards from NSF and ONR, the Kenneth T. Whitby Award from the AAAR (1998), and Stanford's Gores Award for Teaching Excellence (2013); she also was a co-recipient of Atmospheric Environment’s Haagen-Smit Outstanding Paper Award (2001).
She has served on advisory committees for the Bay Area Air Quality Management District and for the California Air Resources Board. She has been an Associate Editor for Environmental Science & Technology, and Aerosol Science and Technology, and has served on the advisory board for the journal Environmental Science & Technology.
At Stanford, Prof. Hildemann has been chair of the Department of Civil & Environmental Engineering, and served as an elected member of the Faculty Senate. She has chaired the School of Engineering Library Committee, the University Committee on Judicial Affairs, and the University Breadth Governance Board. -
Mark Z. Jacobson
Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment
BioMark Z. Jacobson’s career has focused on better understanding air pollution and global warming problems and developing large-scale clean, renewable energy solutions to them. Toward that end, he has developed and applied three-dimensional atmosphere-biosphere-ocean computer models and solvers to simulate air pollution, weather, climate, and renewable energy. He has also developed roadmaps to transition states and countries to 100% clean, renewable energy for all purposes and computer models to examine grid stability in the presence of high penetrations of renewable energy.
-
Rishee Jain
Associate Professor of Civil and Environmental Engineering
BioProfessor Jain's research focuses on the development of data-driven and socio-technical solutions to sustainability problems facing the urban built environment. His work lies at the intersection of civil engineering, data analytics and social science. Recently, his research has focused on understanding the socio-spatial dynamics of commercial building energy usage, conducting data-driven benchmarking and sustainability planning of urban buildings and characterizing the coupled dynamics of urban systems using data science and micro-experimentation. For more information, see the active projects on his lab (Stanford Urban Informatics Lab) website.
-
Sneha Jain
Postdoctoral Scholar, Civil and Environmental Engineering
Current Research and Scholarly InterestsThe overarching goal of my research is to understand the impact of the built environment on human well-being and integrate the complexity and dynamism of human-environment interaction into effective design strategies that promote i) health and well-being, ii) equitability, and iii) sustainability.
Currently, I am working on evaluating the impact of sustainble retrofit solutions on the wellbeing of low-income renters living in affordable housing. I have strong interest to work on quantifying the impact of exposure to daylight on human comfort, sleep patterns, alterness and stress relief. -
Anne Kiremidjian
The C.L. Peck, Class of 1906 Professor in the School of Engineering
BioKiremidjian’s research focuses in two main areas. The first is in earthquake hazard, risk, and resilience modeling. She works on structural component and systems reliability methods; structural damage evaluation models; and regional damage, loss and casualty estimation methods utilizing geographic information and database management systems for portfolios of buildings or spatially distributed lifeline systems assessment with ground motion and structure correlations. Her current research has focused on the development of time dependent hazard and risk models for resilience evaluation of hospitals, schools and financial instruments. In the area of time dependent risk assessment, she has developed models for damage estimation of deteriorating structures in varying environmental conditions.
The second area of research focuses on the design and implementation of wireless sensor networks for health monitoring of structures under every-day loading conditions, and the development of robust and computationally efficient algorithms for structural damage diagnosis following extreme events that can be embedded in wireless sensing units. The damage algorithms utilize modern data science, machine learning and artificial intelligence methods. -
Peter K. Kitanidis
Professor of Civil and Environmental Engineering
BioKitanidis develops methods for the solution of interpolation and inverse problems utilizing observations and mathematical models of flow and transport. He studies dilution and mixing of soluble substances in heterogeneous geologic formations, issues of scale in mass transport in heterogeneous porous media, and techniques to speed up the decay of pollutants in situ. He also develops methods for hydrologic forecasting and the optimization of sampling and control strategies.
-
Erik Kolderup
Adjunct Lecturer, Civil and Environmental Engineering
BioErik Kolderup is a consulting engineer focusing on building energy efficiency. He served as Vice President of Eley Associates and Associate Principal at Architectural Energy Corporation in San Francisco, before starting Kolderup Consulting in 2007. He holds degrees in electrical engineering (BS 1985, MS 1986) and industrial engineering (MS 1990) from Stanford and is an ASHRAE-certified Building Energy Modeling Professional.
Please see also www.kolderupconsulting.com. -
Jeffrey R. Koseff
William Alden Campbell and Martha Campbell Professor in the School of Engineering, Professor of Oceans and Senior Fellow at the Woods Institute for the Environment
BioJeff Koseff, founding co-director of the Stanford Woods Institute for the Environment, is an expert in the interdisciplinary domain of environmental fluid mechanics. His research falls in the interdisciplinary domain of environmental fluid mechanics and focuses on the interaction between physical and biological systems in natural aquatic environments. Current research activities are in the general area of environmental fluid mechanics and focus on: turbulence and internal wave dynamics in stratified flows, coral reef and sea-grass hydrodynamics, the role of natural systems in coastal protection, and flow through terrestrial and marine canopies. Most recently he has begun to focus on the interaction between gravity currents and breaking internal waves in the near-coastal environment, and the transport of marine microplastics. Koseff was formerly the Chair of Civil and Environmental Engineering, and the Senior Associate Dean of Engineering at Stanford, and has served on the Board of Governors of The Israel Institute of Technology, and has been a member of the Visiting Committees of the Civil and Environmental Engineering department at Carnegie-Mellon University, The Iowa Institute of Hydraulic Research, and Cornell University. He has also been a member of review committees for the College of Engineering at the University of Michigan, The WHOI-MIT Joint Program, and the University of Minnesota Institute on the Environment. He is a former member of the Independent Science Board of the Bay/Delta Authority. He was elected a Fellow of the American Physical Society in 2015, and received the Richard Lyman Award from Stanford University in the same year. In 2020 he was elected as a Fellow of the California Academy of Sciences. Koseff also served as the Faculty Athletics Representative to the Pac-12 and NCAA for Stanford until July 2024.
-
Kincho Law
Professor of Civil and Environmental Engineering
BioProf. Law’s professional and research interests focus on the application of computational and information science in engineering. His work has dealt with various aspects of computational mechanics and structural dynamics, AI and machine learning, large scale database management, Internet and cloud computing, numerical methods and high performance computing. His research application areas include computer aided engineering, legal and engineering informatics, engineering enterprise integration, web services and supply chain management, monitoring and control of engineering systems, smart infrastructures, and smart manufacturing.
-
James Leckie
C.L. Peck, Class of 1906 Professor in the School of Engineering, Emeritus
BioLeckie investigates chemical pollutant behavior in natural aquatic systems and engineered processes, specifically the environmental aspects of surface and colloid chemistry and the geochemistry of trace elements. New research efforts are focused on the development of techniques and models for assessment of exposure of humans to toxic chemicals. Specific attention has been paid to the evaluation of exposure of young children to toxic chemicals. Other interests include technology transfer and the development of environmental science programs in developing nations.
-
Michael Lepech
Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment
BioUnsustainable energy and material consumption, waste production, and emissions are some of today’s most pressing global concerns. To address these concerns, civil engineers are now designing facilities that, for example, passively generate power, reuse waste, and are carbon neutral. These designs are based foremost on longstanding engineering theory. Yet woven within this basic knowledge must be new science and new technologies, which advance the field of civil engineering to the forefront of sustainability-focused design.
My research develops fundamental engineering design concepts, models, and tools that are tightly integrated with quantitative sustainability assessment and service life modeling across length scales, from material scales to system scales, and throughout the early design, project engineering, construction, and operation life cycle phases of constructed facilities. My research follows the Sustainable Integrated Materials, Structures, Systems (SIMSS) framework. SIMSS is a tool to guide the multi-scale design of sustainable built environments, including multi-physics modeling informed by infrastructure sensing data and computational learning and feedback algorithms to support advanced digital-twinning of engineered systems. Thus, my research applies SIMMS through two complementary research thrusts; (1) developing high-fidelity quantitative sustainability assessment methods that enable civil engineers to quickly and probabilistically measure sustainability indicators, and (2) creating multi-scale, fundamental engineering tools that integrate with sustainability assessment and facilitate setting and meeting sustainability targets throughout the life cycle of constructed facilities.
Most recently, my research forms the foundation of the newly created Stanford Center at the Incheon Global Campus (SCIGC) in South Korea, a university-wide research center examining the potential for smart city technologies to enhance the sustainability of urban areas. Located in the smart city of Songdo, Incheon, South Korea, SCIGC is a unique global platform to (i) advance research on the multi-scale design, construction, and operation of sustainable built environments, (ii) demonstrate to cities worldwide the scalable opportunities for new urban technologies (e.g., dense urban sensing networks, dynamic traffic management, autonomous vehicles), and (iii) improve the sustainability and innovative capacity of increasingly smarter cities globally.
With an engineering background in civil and environmental engineering and material science (BSE, MSE, PhD), and business training in strategy and finance (MBA), I continue to explore to the intersection of entrepreneurship education, innovation capital training, and the potential of startups to more rapidly transfer and scale technologies to solve some of the world's most challenging problems. -
Jerker Lessing
Adjunct Professor, Civil and Environmental Engineering
BioWith a PhD from Lund University, Sweden, focused on strategic aspects of industrialized construction, I have the position as Director of Research & Development at BoKlok, Sweden’s leading housing company within industrialized construction. BoKlok is a joint venture between the Construction Company Skanska and the furniture Company IKEA. Before joining BoKlok, I worked for one of Sweden's leading engineering firms, Tyréns AB, where I led a team of Consultants focusing on Construction innovation. I was also engaged by leading Construction and housing companies as a consultant and advisor for numerous innovation- and development projects aimed at industrialized construction.
Since 2004, I have concurrently conducted research at Lund University. I am frequently engaged as a lecturer in both academia and industry, have co-authored a book about industrialized construction and I publish research in international Journals.
I have been a visiting researcher and lecturer at Stanford University since 2013 and have established and taught the course CEE324 Industrialized Construction, organized study trips for Stanford students and faculty to Sweden, as well as organized the Industrialized Construction Forum which is a industry-academia seminar held annually.
In my research I developed a framework describing contemporary industrialized construction, which has served as a foundation for academic research, as well as a guide for the industry’s development, in Sweden and internationally. -
Raymond Levitt
Kumagai Professor in the School of Engineering, Emeritus
Current Research and Scholarly InterestsDr. Levitt founded and directs Stanford’s Global Projects Center (GPC), which conducts research, education and outreach to enhance financing, governance and sustainability of global building and infrastructure projects. Dr. Levitt's research focuses on developing enhanced governance of infrastructure projects procured via Public-Private Partnerships (PPP) delivery, and alternative project delivery approaches for complex buildings like full-service hospitals or data centers.