Stanford Doerr School of Sustainability


Showing 1,341-1,360 of 1,381 Results

  • Hong Yang

    Hong Yang

    Ph.D. Student in Geological Sciences, admitted Autumn 2018

    BioHong Yang is currently a PhD student in Geological Science working with Wendy L. Mao. He joined Mao’s lab at Stanford University in 2018, after finishing his Master’s Degree at HPSTAR, Shanghai, where he was supervised by Jung-Fu Lin. His Master’s thesis focused on the experimental determination of iron isotopic fractionation behavior of lower mantle phases using the Synchrotron X-ray technique NRIXS. Before that, he was an undergraduate majoring in Geochemistry at the University of Science and Technology of China. There he performed the quality assessment of bottled drinking water and water from Lake Chao under Fang Huang’s supervision.

    Hong’s research interests include the chemical (especially isotopic) evolution of the Earth and other planetary bodies; structure and sound velocities of iron-alloys at high pressure; pressure-induced electronic, magnetic, elastic and structural transitions in materials; as well as high pressure photon science. His recent research was published on Earth Planet. Sci. Lett. 506, 113-122 (2019), entitled “Iron isotopic fractionation in mineral phases from Earth’s lower mantle: Did terrestrial magma ocean crystallization fractionate iron isotopes?”.

  • Audrey Yau

    Audrey Yau

    Director, Stanford Energy Fellowships, Precourt Institute for Energy

    BioAs a Director in the Precourt Institute for Energy and the Sustainability Accelerator in the Stanford Doerr School of Sustainability, Audrey is responsible for the overall strategic and operational leadership for the Stanford Energy Postdoctoral Fellowship, the Summer Undergraduate Program on Energy Research, and the Stanford Sustainability Accelerator Fellowship. In her role, Audrey develops educational experiences that connect academic learning with real world impact for undergraduates and postdoctoral scholars in Stanford's newest school.

  • David Zhen Yin

    David Zhen Yin

    Senior Research Scientist - Physical

    BioDavid Zhen Yin is the co-founder and program director of Stanford Mineral-X to lead the research of sustainable critical minerals explorations for renewable energy transitions. He is also the principal scientist at Stanford Center for Earth Resources Forecasting and Co-PI of the Stanford-KoBold collaboration. He develops data-scientific approaches for prediction, uncertainty quantification, and decision-making in critical earth resources exploration and development.

    David developed broad experience working with complex projects involving academia and industry and broad knowledge of the fields. His research delivered several key technologies transferred as in-house technologies in Chevron, Equinor, and KoBold. In addition, his research developments have been implemented on various subjects, from Antarctica bed topography modeling, critical mineral explorations in Canada/China/US, and the North Sea and Gulf of Mexico projects.

    Before joining Stanford, David was a Research Associate at Edinburgh Time-Lapse Project in Scotland, leading a geophysical monitoring research project in collaboration with Equinor from 2016 to 2018. He was also a technology consultant at Equinor's Research Center in Bergen, Norway. Then, he was a Chevron CoRE Postdoctoral Fellow at Stanford from 2018 to 2021.

    David received his Ph.D. in Geosciences from Heriot-Watt University, Edinburgh, UK, in 2016. His research interests include data science for geosciences, geological uncertainty quantification, and decision-making under uncertainty. He has authored one book and tens of articles in peer-reviewed journals and international conferences.

  • Leehi Yona

    Leehi Yona

    Ph.D. Student in Environment and Resources, admitted Autumn 2018
    Juris Doctor Student, Law

    Current Research and Scholarly InterestsLeehi studies greenhouse gas inventories and how governments and corporations use (or misuse) scientific knowledge in climate law and policy. She is particularly interested in how these actors account for their greenhouse gas emissions and in the gaps between scientifically measured and politically accounted-for emissions.

  • Jessica Yu

    Jessica Yu

    Postdoctoral Scholar, Earth System Science

    BioJessica Yu joined the Climate and Energy Policy Program (CEPP) and the Woods Institute for the Environment as a Postdoctoral Fellow in September 2022. Her current research focuses on the development of generalized public health guidance and best practices for protecting vulnerable populations from the health impacts of wildfire smoke. Working within an interdisciplinary team at CEPP, her goal is to continue applying and expanding her scientific skills to address the emerging threats of wildfire and other climate change-related policy challenges in California and beyond.

    Prior to joining Stanford, she completed her PhD in Population and Public Health at the University of British Columbia and an MSc in Global Health at McMaster University, where she worked on occupational and environmental health research with slum and mining communities in India and South Africa. Beyond academia, she's interested in learning how policy, technology, and social entrepreneurship can be leveraged to address inequalities in global environmental health and devise pro-equity and community-level solutions.

  • Miki Yu

    Miki Yu

    Assistant Director, Strategic Energy Alliance, Precourt Institute for Energy

    BioMiki Yu joined Precourt Institute for Energy (PIE) as an Event and Outreach Program Planner. In this role she will help shape the programs that PIE, TomKat Center and GCEP offer as they build greater visibility within the Stanford community, the energy community at large, and throughout the world.

    Miki started at Stanford working for the Office of Development in 2002, where she reported to the Vice President’s office. She then joined the Stanford Challenge Campaign as an initial team member, working with OOD partners and engaging volunteers and donors at every stage to build and direct momentum for The Stanford Challenge campaign. She was instrumental in executing the Leading Matters component of the campaign, which achieved record breaking attendance and engagement results.

  • Xueying Yu

    Xueying Yu

    Postdoctoral Scholar, Earth System Science

    BioMy research interests include atmospheric chemistry, greenhouse gas emissions, satellite remote sensing retrievals, and carbon mitigation. I use inverse modeling and other data-driven approaches to address the above issues across multiple scales, in particular, to quantify methane emissions from point source level to the global budget.

  • Yifan Yu

    Yifan Yu

    Ph.D. Student in Geophysics, admitted Autumn 2022

    BioYifan is a PhD student in Geophysics, advised by Prof. Greg Beroza. His research interests include earthquake source study, location, and machine learning. He received bachelor degree in geophysics from Nanjing University.

  • Emily Juliette Zakem

    Emily Juliette Zakem

    Assist Prof (By Courtesy), Earth System Science

    BioEmily Zakem is a Principal Investigator at the Department of Global Ecology at the Carnegie Institution for Science. Previously, she was a Simons Foundation Postdoctoral Fellow in Marine Microbial Ecology at the University of Southern California in Los Angeles. She completed her Ph.D. in Climate Physics and Chemistry in the Department of Earth, Atmospheric and Planetary Sciences at the Massachusetts Institute of Technology. In her research, she aims to improve understanding of the connections between microbial ecosystems, global biogeochemistry, and the climate system. She uses theory and mathematical models to understand how microbial ecology drives carbon, nitrogen, and other elemental cycling. She develops broadly applicable models of microbial populations, grounded in underlying chemical and physical constraints, in order to robustly predict the biogeochemistry of past, present, and future environments.

  • Richard Zare

    Richard Zare

    Marguerite Blake Wilbur Professor of Natural Science and Professor, by courtesy, of Physics

    Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.