Stanford University
Showing 201-278 of 278 Results
-
Ellen Youngsoo Rim
Assistant Professor of Chemical Engineering
BioPlants are increasingly vulnerable to environmental stressors—such as pathogen infection, drought, and heat—from climate change. These challenges threaten global food security and limit the carbon sequestration potential of plants. Our research goal is to sustainably enhance plant productivity and resilience through protein engineering. We engineer proteins involved in plant immune and hormone signaling pathways using directed evolution in high-throughput single cell systems. Directed evolution is a synthetic biology approach that enables rapid development of proteins with novel or improved functions. We combine this approach with machine learning, which allows us to learn from large datasets generated during the directed evolution process. Engineered proteins are then introduced into plants to enhance crop yields and climate resilience.
-
Carlos Jose Rodriguez Santiago
Ph.D. Student in Chemical Engineering, admitted Autumn 2022
BioCarlos Rodriguez Santiago is a Chemical Engineering PhD candidate working in the lab of Dr. Judith Shizuru to develop protein therapeutics that will facilitate hematopoietic stem cell transplantation without the need for chemotherapy or radiation. His PhD thesis work is at the intersection of immunology, oncology, and protein engineering. Carlos is also a Sarafan CheM-H Lipshultz Graduate Fellow participating in the Chemistry/Biology Interface (CBI) Predoctoral training program which aims to cultivate interactions and thinking across disciplinary lines to enable innovations that improve human health.
Prior to his PhD work, Carlos helped found the Protein Engineering Knowledge Center (PEKC) at Stanfords Innovative Medicines Accelerator (IMA). There he collaborated with researchers to discover and engineer antibodies against therapeutically relevant targets. Several antibodies discovered by Carlos have officially been licensed out for further therapeutic development. -
Milenia Rojas Mendoza
Ph.D. Student in Chemical Engineering, admitted Autumn 2022
OTL Intern, Office of Technology Licensing (OTL)BioMilenia Rojas (she/her) is a PhD candidate in the Chemical Engineering Department at Stanford University. She is advised by Thomas Jaramillo. Milenia's research focuses on integrating cost-effective, earth-abundant metal catalysts into membrane electrode assembly water electrolyzers for hydrogen production. Her goal is to reduce production costs, extend lifespan, and enhance scalability to support the energy transition. She is part of the Emerson Consequential Scholars Program and works part time at the office of technology transfer. She graduated in 2022 with a Bachelor's in Chemical Engineering from the University of Rochester.
-
Elizabeth Sattely
Associate Professor of Chemical Engineering
BioPlants have an extraordinary capacity to harvest atmospheric CO2 and sunlight for the production of energy-rich biopolymers, clinically used drugs, and other biologically active small molecules. The metabolic pathways that produce these compounds are key to developing sustainable biofuel feedstocks, protecting crops from pathogens, and discovering new natural-product based therapeutics for human disease. These applications motivate us to find new ways to elucidate and engineer plant metabolism. We use a multidisciplinary approach combining chemistry, enzymology, genetics, and metabolomics to tackle problems that include new methods for delignification of lignocellulosic biomass and the engineering of plant antibiotic biosynthesis.
-
Alay Shah
Masters Student in Chemical Engineering, admitted Spring 2024
Bio→ Graduate Chemical Engineering student.
→ Previously, Process Engineer at Kite, a Gilead Company.
→ Bachelors in Biomedical Engineering at the University of Texas, Austin.
→ 5 years of experience working in cGMP pharmaceutical manufacturing and upstream process development. Working knowledge of cell and gene therapy, lean manufacturing, risk assessment &mitigation, IOPQ Validation, quality systems, eQRMS, asset lifecycle management, SAP ERP, Syncade MES, Oracle EBS, LIMS, ISO standards and FDA regulations.
→ Through Stanford's MS program, I aim to build upon my biomanufacturing experience, further developing my skillsets in bioreactor design and data analytics to model and improve standardized development of therapeutics for patients -
Eric S.G. Shaqfeh
Lester Levi Carter Professor and Professor of Mechanical Engineering
Current Research and Scholarly InterestsI have over 25 years experience in theoretical and computational research related to complex fluids following my PhD in 1986. This includes work in suspension mechanics of rigid partlcles (rods), solution mechanics of polymers and most recently suspensions of vesicles, capsules and mixtures of these with rigid particles. My research group is internationally known for pioneering work in all these areas.
-
Sanzeeda Baig Shuchi
Ph.D. Student in Chemical Engineering, admitted Summer 2021
BioSanzeeda Baig Shuchi envisions a world where energy crisis is a thing of the past. She is a Ph.D. candidate in Chemical Engineering (ChemE) at Stanford University. Her current energy research focuses on improving and understanding lithium battery stability using surface science and interface engineering supervised by Prof. Stacey F. Bent and Prof. Yi Cui. She is a TomKat Center Graduate Fellow for Translational Research and a Link Foundation Energy Fellow. She completed her MS in ChemE from Stanford. She also received the Summer First Fellowship and ChemE departmental fellowship. Before Stanford, she completed her BS in the same field from Bangladesh University of Engineering and Technology (BUET), where she graduated with the highest CGPA in the Faculty of Engineering and is a prime minister gold medal candidate. Other than research, she serves as the lab safety officer in Bent group and enjoys performing departmental student mentoring and student representative activities. She has also previously served as a co-organizer of Engineering Students for DEI (ES4DEI) at Stanford and the vice-president of Environment Watch: BUET. Outside the lab, she enjoys houseplants, interior decoration, painting, board games, and exploring local beaches and restaurants.
-
Andrew Spakowitz
Senior Associate Dean for Research and Faculty Affairs, Professor of Chemical Engineering, of Materials Science and Engineering and, by courtesy, of Applied Physics
Current Research and Scholarly InterestsTheory and computation of biological processes and complex materials
-
James Swartz
James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering
Current Research and Scholarly InterestsProgram Overview
The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances. -
Sho Takatori
Associate Professor of Chemical Engineering
BioPeople say that a picture is worth a thousand words. We think that an equation is worth a thousand pictures. Literally. By collecting and processing data-rich images of complex fluids and matter, we develop “picture-perfect” equations to learn structure-property relationships for new material innovation.
In the Takatori lab, we combine theory, simulation, and experiment to discover mathematical models for complex fluids in engineered and natural environments. We use advanced microscopy and analyze pictures with data-driven methods to understand material properties that bridge the microscopic-to-continuum scales. Our research encompasses soft squishy materials like polymers and liquid crystals, as well as granular matter like sand, powders, and foams.
Outside of research, I have had a strong passion for public speaking since high school, taking speech courses in college and competing in speech contests in Toastmasters International (a professional organization to improve public speaking and leadership skills) for several years as a PhD student. More recently, as a professor and educator, I have channeled my passion for speaking towards science education and technical communication. I have always believed that effective science communication can make broad impacts to society by building public trust in science, promoting data-driven decisions in government and industry, and improving the accessibility of science to all communities. I look forward to continue working on effective science communication skills and storytelling techniques with Stanford graduate students and researchers. -
William Abraham Tarpeh
Assistant Professor of Chemical Engineering, by courtesy, of Civil and Environmental Engineering and Center Fellow at the Precourt Institute for Energy and, by courtesy, at the Woods Institute for the Environment
BioReimagining liquid waste streams as resources can lead to recovery of valuable products and more efficient, less costly approaches to reducing harmful discharges to the environment. Pollutants in effluent streams can be captured and used as valuable inputs to other processes. For example, municipal wastewater contains resources like energy, water, nutrients, and metals. The Tarpeh Lab develops and evaluates novel approaches to resource recovery from “waste” waters at several synergistic scales: molecular mechanisms of chemical transport and transformation; novel unit processes that increase resource efficiency; and systems-level assessments that identify optimization opportunities. We employ understanding of electrochemistry, separations, thermodynamics, kinetics, and reactor design to preferentially recover resources from waste. We leverage these molecular-scale insights to increase the sustainability of engineered processes in terms of energy, environmental impact, and cost.
-
Jeffrey B. Tok
Laboratory Director, Chemical Engineering
BioEducation:
The University of Washington, Seattle, WA, B.Sc. (Chemistry & Biochemistry), 1989-1992
The University of Chicago, Chicago, IL, Ph.D. (Bioorganic Chemistry), 1992-1996
Harvard University, Boston, MA, Postdoctoral Research Fellow (Bioorganic Chemistry), 1997-1999
Work Experience:
Assistant Professor, City University of New York, York College and Graduate Center, 1999-2003
Associate Professor, City University of New York, York College and Graduate Center, 2003-2004
Principal Scientist (Indefinite), Lawrence Livermore National Laboratory, 2004-2008
Chief BioScientist, Micropoint Bioscience Inc, 2008-2010
Senior Research Engineer/Scientist, Stanford University, 2010-present
Director, Uytengsu Teaching Center, Shriram Center, 2015-present
Manager, Soft & Hybrid Materials Shared Facility, Stanford Nano Shared Facility, 2010-present
Manager & Instructor, Dept of Chemical Engineering Teaching Lab, 2010-present
Research Activities (via 'Google Scholar'):
https://scholar.google.com/citations?user=hXSGJC0AAAAJ&hl=en&oi=sra -
Rupin Vaidya
Masters Student in Chemical Engineering, admitted Autumn 2025
BioHere to learn, share, and meet new people. Feel free to reach out!
HCP Stanford Masters Student in Chemical Engineering, beginning Autumn 2025
Full-Time Process Engineer I at Lummus Technology based in Houston, TX, July 2025
Graduated with a Bachelors in Chemical Engineering from the University of Texas at Austin, May 2025 -
Carlos Vera
Postdoctoral Scholar, Chemical Engineering
BioCarlos obtained his B.S. in Industrial Biotechnology from the University of Puerto Rico at Mayaguez. He received his PhD from the University of Colorado at Boulder working with Dr. Leslie Leinwand on myosin myopathies. His dissertation focused on analyzing the effects on myosin's cross-bridge cycle from mutations associated to Hypertrophic (HCM) and Dilated (DCM) cardiomyopathies. For his postdoc he will focus on disease mechanisms that can influence severity.
-
Pingyu Wang
Postdoctoral Scholar, Chemical Engineering
BioPingyu is a postdoctoral scholar in the Tarpeh Lab at Stanford University, where he develops low-cost, continuous sensing technologies for environmental monitoring. His current research focuses on multiplex detection of reactive nitrogen species to improve nitrogen management in agriculture and wastewater treatment.
Pingyu earned his PhD in Materials Science and Engineering at Stanford, where he developed high-density neural interfaces for retinal prostheses aimed at vision restoration. Drawing on his background in bioelectronics and sensor design, he is interested in advancing sensing technologies to support data-driven solutions for environmental challenges. -
Robert Waymouth
Robert Eckles Swain Professor of Chemistry and Professor, by courtesy, of Chemical Engineering
BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including bioactive polymers, synthetic fuels, and sustainable plastics. In one such breakthrough, Professor Waymouth and Professor Wender developed a new class of gene delivery agents.
Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.
Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. In collaboration with Dr. James Hedrick of IBM, we have developed a platform of highly active organic catalysts and continuous flow reactors that provide access to polymer architectures that are difficult to access by conventional approaches.
The Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver genes, drugs and probes into cells and live animals. These advances led to the joint discovery with the Wender group of a general, safe, and remarkably effective concept for RNA delivery based on a new class of synthetic cationic materials, Charge-Altering Releasable Transporters (CARTs). This technology has been shown to be effective for mRNA based cancer vaccines. -
熊剑 (Jian Xiong)
Postdoctoral Scholar, Chemical Engineering
BioI thrive to understand the roles of lysosomes in physiological and pathological conditions. Lysosomes are both degradation compartment and metabolic controlling hub, and dysregulation of lysosomal functions are frequently implicated in a vast number of diseases including neurodegenerative diseases, however, the systematic knowledge of the molecular mechanism by which lysosomal contributes to these diseases is lacking. Ion channels are the primary mediators of neuronal activity, defects in neuronal ion channel activity are linked with many kinds of neurodegenerative diseases. Interestingly, besides typical ion channels that are involved in the neuronal activity, defects in lysosomal ion channels, such as TRPML1, CLN7 and CLC-7 are also implicated in neuropathy. My previous work as Ph.D student in University of Texas MD Anderson Cancer Center focused on regulation of lysosomal function by ion channels and metabolites. I discovered a mechanism of lysosomal Na+ channel regulate mTORC1 activation by regulating lysosomal amino acid accumulation. I also discovered role of glutamine in controlling lysosomal degradation capacity. In the meantime, I developed novel methods to isolate organelles. My ultimate research goal is to understand the key developmental pathways and how alterations in gene sequences and expression contribute to human disease, therefore, I am pursuing independent academic researcher as my career goal. Starting Feb 2022, I work with Dr. Monther Abu-Remaileh at Stanford University on role of lysosomes in neurodegenerative diseases. I use genetics, chemical biology and omics approaches to study lysosome function under various physiological and pathological conditions, especially age-associated neurodegenerative disorders, and monogenic neurodegenerative lysosome storage diseases. In Stanford, I aim to integrate ionic regulation, metabolomic regulation and functional proteomic regulation to systematically understand the biology of lysosome in physiological conditions and pathological conditions.
-
Chang M. Yun
Ph.D. Student in Chemical Engineering, admitted Autumn 2023
Current Research and Scholarly InterestsGenomics, Computational Biology, Deep Learning