Bio-X


Showing 21-40 of 1,061 Results

  • Ronald L. Ariagno

    Ronald L. Ariagno

    Professor (Clinical) of Pediatrics, Emeritus

    Current Research and Scholarly InterestsDevelopmental Physiology and Sudden Infant Death Syndrome Research Laboratory closed in 2008.

    Current effort, as Chair of Task Force and neonatal consult at the FDA, is to establish through consensus a culture of investigation and collaboration for all clinical neonatology practices: academic, corporate and community based to maximize the opportunity to participate in research effort needed for the regulatory approval of neonatal therapeutics to improve the outcome of critically ill infants.

  • Kevin Arrigo

    Kevin Arrigo

    Donald and Donald M. Steel Professor of Earth Sciences and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsInvestigates role of ocean biology in gobal carbon and nutrient cycles.

  • Steven Artandi, MD, PhD

    Steven Artandi, MD, PhD

    Laurie Kraus Lacob Director of the Stanford Cancer Institute (SCI), Jerome and Daisy Low Gilbert Professor and Professor of Biochemistry

    Current Research and Scholarly InterestsTelomeres are nucleoprotein complexes that protect chromosome ends and shorten with cell division and aging. We are interested in how telomere shortening influences cancer, stem cell function, aging and human disease. Telomerase is a reverse transcriptase that synthesizes telomere repeats and is expressed in stem cells and in cancer. We have found that telomerase also regulates stem cells and we are pursuing the function of telomerase through diverse genetic and biochemical approaches.

  • Ann M. Arvin

    Ann M. Arvin

    Lucile Salter Packard Professor of Pediatrics and Professor of Microbiology and Immunology, Emerita

    Current Research and Scholarly InterestsOur laboratory investigates the pathogenesis of varicella zoster virus (VZV) infection, focusing on the functional roles of particular viral gene products in pathogenesis and virus-cell interactions in differentiated human cells in humans and in Scid-hu mouse models of VZV cell tropisms in vivo, and the immunobiology of VZV infections.

  • Euan A. Ashley

    Euan A. Ashley

    Arthur L. Bloomfield Professor of Medicine and Professor of Genetics, of Biomedical Data Science and, by courtesy, of Pathology

    Current Research and Scholarly InterestsThe Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve the diagnosis of genetic disease and to personalize the practice of medicine. At the wet bench, we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality in biological pathways and find targets for therapeutic development.

  • Laura Attardi

    Laura Attardi

    Catharine and Howard Avery Professor of the School of Medicine and Professor of Genetics

    Current Research and Scholarly InterestsOur research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.

  • Jeffrey Axelrod

    Jeffrey Axelrod

    Professor of Pathology

    Current Research and Scholarly InterestsGenetic and cell biological analyses of signals controlling cell polarity and morphogenesis. Frizzled signaling and cytoskeletal organization.

  • Rosa Bacchetta

    Rosa Bacchetta

    Professor (Research) of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsIn the coming years, I plan to further determine the genetic and immunological basis of diseases with autoimmunity or immune dysregulation in children. I believe that much can still be learned from the in depth mechanistic studies of pediatric autoimmune diseases. Genomic analysis of the patients' samples has become possible which may provide a rapid indication of altered target molecules. I plan to implement robust functional studies to define the consequences of these genetic abnormalities and bridge them to the patient's clinical phenotype.

    Understanding functional consequences of gene mutations in single case/family first and then validating the molecular and cellular defects in other patients with similar phenotypes, will anticipate and complement cellular and gene therapy strategies.

    For further information please visit the Bacchetta Lab website:
    http://med.stanford.edu/bacchettalab.html

  • Stephen A. Baccus

    Stephen A. Baccus

    Professor of Neurobiology

    Current Research and Scholarly InterestsWe study how the neural circuitry of the vertebrate retina encodes visual information and performs computations. To control and measure the retinal circuit, we present visual images while performing simultaneous two-photon imaging and multielectrode recording. We perturb the circuit as it operates using simultaneous intracellular current injection and multielectrode recording, and use the resulting large data sets to construct models of retinal computation.

  • Jeremy Bailenson

    Jeremy Bailenson

    Thomas More Storke Professor, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Education

    BioJeremy Bailenson is founding director of Stanford University’s Virtual Human Interaction Lab, Thomas More Storke Professor in the Department of Communication, Professor (by courtesy) of Education, Professor (by courtesy) Program in Symbolic Systems, and a Senior Fellow at the Woods Institute for the Environment. He has served as Director of Graduate Studies in the Department of Communication for over a decade. He earned a B.A. from the University of Michigan in 1994 and a Ph.D. in cognitive psychology from Northwestern University in 1999. He spent four years at the University of California, Santa Barbara as a Post-Doctoral Fellow and then an Assistant Research Professor.

    Bailenson studies the psychology of Virtual and Augmented Reality, in particular how virtual experiences lead to changes in perceptions of self and others. His lab builds and studies systems that allow people to meet in virtual space, and explores the changes in the nature of social interaction. His most recent research focuses on how virtual experiences can transform education, environmental conservation, empathy, and health. He is the recipient of the Dean’s Award for Distinguished Teaching at Stanford. In 2020, IEEE recognized his work with “The Virtual/Augmented Reality Technical Achievement Award”.

    He has published more than 200 academic papers, spanning the fields of communication, computer science, education, environmental science, law, linguistics, marketing, medicine, political science, and psychology. His work has been continuously funded by the National Science Foundation for over 25 years.

    His first book Infinite Reality, co-authored with Jim Blascovich, emerged as an Amazon Best-seller eight years after its initial publication, and was quoted by the U.S. Supreme Court. His new book, Experience on Demand, was reviewed by The New York Times, The Wall Street Journal, The Washington Post, Nature, and The Times of London, and was an Amazon Best-seller.

    He has written opinion pieces for The Washington Post, The Wall Street Journal, Harvard Business Review, CNN, PBS NewsHour, Wired, National Geographic, Slate, The San Francisco Chronicle, TechCrunch, and The Chronicle of Higher Education, and has produced or directed six Virtual Reality documentary experiences which were official selections at the Tribeca Film Festival. His lab has exhibited VR in hundreds of venues ranging from The Smithsonian to The Superbowl.

  • Michael Baiocchi

    Michael Baiocchi

    Associate Professor of Epidemiology and Population Health and, by courtesy, of Statistics and of Medicine (Stanford Prevention Research Center)

    BioProfessor Baiocchi is a PhD statistician in Stanford University's Epidemiology and Population Health Department. He thinks a lot about behavioral interventions and how to rigorously evaluate if and how they work. Methodologically, his work focuses on creating statistically rigorous methods for causal inference that are transparent and easy to critique. He designed -- and was the principle investigator for -- two large randomized studies of interventions to prevent sexual assault in the settlements of Nairobi, Kenya.

    Professor Baiocchi is an interventional statistician (i.e., grounded in both the creation and evaluation of interventions). The unifying idea in his research is that he brings rigorous, quantitative approaches to bear upon messy, real-world questions to better people's lives.

  • Julie Baker

    Julie Baker

    Professor of Genetics

    Current Research and Scholarly InterestsWe examine how cells communicate and function during fetal development. The work in my laboratory focuses on the establishment of specific cell fates using genomics to decipher interactions between chromatin and developmental signaling cascades, between genomes and rapidly evolving cell types, and between genomic copy number variation and gene expression. In recent years we have focused on the vastly understudied biology of the trophoblast lineage, particularly how this lineage evolved.

  • Karthik Balakrishnan, MD, MPH, FAAP, FACS

    Karthik Balakrishnan, MD, MPH, FAAP, FACS

    Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsDr. Balakrishnan's research focuses on innovative ways to improve and standardize treatments and measure outcomes in complex pediatric airway and aerodigestive conditions , as well as ways to reduce treatment costs and medical errors. By improving outcomes and reducing costs, he aims to improve the value of care, while also optimizing patient and caregiver experience during the care process.

  • Nicholas Bambos

    Nicholas Bambos

    Richard W. Weiland Professor in the School of Engineering and Professor of Electrical Engineering

    BioNick Bambos is R. Weiland Professor in the School of Engineering at Stanford University, having a joint appointment in the Department of Electrical Engineering and the Department of Management Science & Engineering. He has been the Fortinet Founders Department Chair of the Management Science & Engineering Department (2016 – 20).

    He heads the Computer Systems Performance Engineering Lab (Perf-Lab) at Stanford, comprised of doctoral students and industry visitors engaged in various research projects, and was the Director (1999 – 2005) of the Stanford Networking Research Center (a research project of about $30M). He has published over 300 peer-reviewed research publications and graduated over 40 doctoral students (including two post-doctoral ones), who have moved on to leadership positions in academia, the Silicon Valley industries and technology startups, finance and venture capital, etc.

    His research interests are in architecture and high-performance engineering of computer systems and networks, as well as data analytics with an emphasis on medical and health-care analytics. His research contributions span the areas of networking and the Internet, cloud computing and data centers, multimedia streaming, computer security, digital health, etc. His methodological interests and contributions span the areas of network control, online task scheduling, routing and distributed processing, machine learning and artificial intelligence, etc.

    He received his Ph.D. (1989) in Electrical Engineering & Computer Sciences from the University of California at Berkeley. Before joining Stanford in 1996, he served as assistant professor (1989 – 95) and tenured associate professor (1995 – 96) of Electrical Engineering at the University of California at Los Angeles (UCLA).

    He has received several best research paper awards and has been the Cisco Systems Faculty Development Chair and the David Morgenthaler Faculty Scholar at Stanford. He has won the IBM Faculty Award, as well as the National Young Investigator Award and the Research Initiation Award from the National Science Foundation. He has been a Berkeley U.C. Regents Fellow, an E. C. Anthony Fellow, and a D. & S. Gale Fellow.

    He has served on various editorial boards of research journals, scientific boards of research labs, international technical and scientific committees, and technical review panels for networking and computing technologies. He has also served on corporate technical boards, as consultant and co-founder of technology start-up companies, and as expert witness in high-profile patent litigation and other legal cases involving information technologies.

  • Niaz Banaei

    Niaz Banaei

    Professor of Pathology and of Medicine (Infectious Diseases)

    Current Research and Scholarly InterestsHis research interests include (1) development, assessment, and improvement of novel infectious diseases diagnostics, (2) enhancing the quality of C. difficile diagnostic results, and (3) characterization of M. tuberculosis virulence determinants.

  • Steven Banik

    Steven Banik

    Assistant Professor of Chemistry

    BioSteven Banik’s research interests center on rewiring mammalian biology and chemical biotechnology development using molecular design and construction. Projects in the Banik lab combine chemical biology, organic chemistry, protein engineering, cell and molecular biology to precisely manipulate the biological machines present in mammalian cells. Projects broadly aim to perform new functions that shed light on regulatory machinery and the potential scope of mammalian biology. A particular focus is the study of biological mechanisms that can be coopted by synthetic molecules (both small molecules and proteins). These concepts are applied to develop new therapeutic strategies for treating aging-related disorders, genetic diseases, and cancer.

    Prior to joining the faculty at Stanford, Steven was a NIH and Burroughs CASI postdoctoral fellow advised by Prof. Carolyn Bertozzi at Stanford. His postdoctoral research developed approaches for targeted protein degradation from the extracellular space with lysosome targeting chimeras (LYTACs). He received his Ph.D. from Harvard University in 2016, where he worked with Prof. Eric Jacobsen on synthetic methods for the selective, catalytic difluorination of organic molecules and new approaches for generating and controlling reactive cationic intermediates in asymmetric catalysis.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 215.

    Bao is a member of the US National Academy of Sciences, National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.

  • Maria Barna

    Maria Barna

    Associate Professor of Genetics

    Current Research and Scholarly InterestsOur lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5’UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.