Bio-X


Showing 101-150 of 929 Results

  • Marion S. Buckwalter, MD, PhD

    Marion S. Buckwalter, MD, PhD

    Professor of Neurology and of Neurosurgery at the Stanford University Medical Center
    On Partial Leave from 08/01/2020 To 11/30/2020

    Current Research and Scholarly InterestsThe goal of the Buckwalter Lab is to improve how people recover after a stroke. We use basic research to understand the cells, proteins, and genes that lead to successful recovery of function, and also how complications develop that impact quality of life after stroke. Ongoing projects are focused on understanding how inflammatory responses are regulated after a stroke and how to make recovery faster and better after stroke.

  • Marshall Burke

    Marshall Burke

    Associate Professor of Earth System Science and Senior Fellow at the Freeman Spogli Institute for International Studies

    BioMarshall Burke is an assistant professor in the Department of Earth System Science, deputy director at the Center on Food Security and the Environment, and center fellow at the Freeman Spogli Institute for International Studies (FSI) at Stanford University. He is also a faculty research fellow at the National Bureau of Economic Research, and a co-founder of AtlasAI, a remote sensing start-up. His research focuses on social and economic impacts of environmental change and on measuring and understanding economic development in emerging markets. His work has appeared in both economic and scientific journals, including recent publications in Nature, Science, The Quarterly Journal of Economics, and The Lancet. He holds a PhD in agricultural and resource economics from the University of California, Berkeley and a BA in international relations from Stanford University.

    Prospective students should see my personal webpage, linked at right.

  • Carlos Bustamante

    Carlos Bustamante

    Professor of Biomedical Data Science, of Genetics and, by courtesy, of Biology
    On Leave from 07/01/2019 To 12/31/2020

    Current Research and Scholarly InterestsMy genetics research focuses on analyzing genome wide patterns of variation within and between species to address fundamental questions in biology, anthropology, and medicine. We focus on novel methods development for complex disease genetics and risk prediction in multi-ethnic settings. I am also interested in clinical data science and development of new diagnostics.I am also interested in disruptive innovation for healthcare including modeling long-term risk shifts and novel payment models.

  • Eugene Butcher

    Eugene Butcher

    Klaus Bensch Professor in Pathology

    Current Research and Scholarly InterestsOur interests include:
    1) The physiology and function of lymphocyte homing in local and systemic immunity;
    2) Biochemical and genetic studies of molecules that direct leukocyte recruitment;
    3) Chemotactic mechanisms and receptors in vascular and immune biology;
    4) Vascular control of normal and pathologic inflammation and immunity;
    5) Systems biology of immune cell trafficking and programming in tumor immunity.

  • Robert Byer

    Robert Byer

    The William R. Kenan, Jr. Professor and Professor of Photon Science

    BioRobert L. Byer has served as President of The American Physical Society, of the Optical Society of America and of the IEEE LEOS. He has served as Vice Provost and Dean of Research at Stanford. He has been Chair of the Department of Applied Physics, Director of the Edward L. Ginzton Laboratory and Director of the Hansen Experimental Physics Laboratory. He is a founding member of the California Council on Science and Technology and served as Chair from 1995-1999. He was a member of the Air Force Scientific Advisory Board from 2002-2006 and has been a member of the National Ignition Facility since 2000.

    Robert L. Byer has conducted research and taught classes in lasers and nonlinear optics at Stanford University since 1969. He has made extraordinary contributions to laser science and technology including the demonstration of the first tunable visible parametric oscillator, the development of the Q-switched unstable resonator Nd:YAG laser, remote sensing using tunable infrared sources and precision spectroscopy using Coherent Anti Stokes Raman Scattering (CARS). Current research includes precision laser measurements in support of the detection of gravitational waves and laser “Accelerator on a chip”.

  • Michele Calos

    Michele Calos

    Professor of Genetics, Emerita

    Current Research and Scholarly InterestsMy lab is developing innovative gene and stem cell therapies for genetic diseases, with a focus on gene therapy and regenerative medicine.

    We have created novel methods for inserting therapeutic genes into the chromosomes at specific places by using homologous recombination and recombinase enzymes.

    We are working on 3 forms of muscular dystrophy.

    We created induced pluripotent stem cells from patient fibroblasts, added therapeutic genes, differentiated, and engrafted the cells.

  • David Camarillo

    David Camarillo

    Associate Professor of Bioengineering

    BioDavid B. Camarillo is Assistant Professor of Bioengineering, (by courtesy) Mechanical Engineering and Neurosurgery at Stanford University. Dr. Camarillo holds a B.S.E in Mechanical and Aerospace Engineering from Princeton University, a Ph.D. in Mechanical Engineering from Stanford University and completed postdoctoral fellowships in Biophysics at the UCSF and Biodesign Innovation at Stanford. Dr. Camarillo worked in the surgical robotics industry at Intuitive Surgical and Hansen Medical, before launching his laboratory at Stanford in 2012. His current research focuses on precision human measurement for multiple clinical and physiological areas including the brain, heart, lungs, and reproductive system. Dr. Camarillo has been awarded the Hellman Fellowship, the Office of Naval Research Young Investigator Program award, among other honors including multiple best paper awards in brain injury and robotic surgery. His research has been funded by the NIH, NSF, DoD, as well as corporations and private philanthropy. His lab’s research has been featured on NPR, the New York Times, The Washington Post, Science News, ESPN, and TED.com as well as other media outlets aimed at education of the public.

  • Emmanuel Candes

    Emmanuel Candes

    Barnum-Simons Chair in Math and Statistics, and Professor of Statistics and, by courtesy, of Electrical Engineering

    BioEmmanuel Candès is the Barnum-Simons Chair in Mathematics and Statistics, a professor of electrical engineering (by courtesy) and a member of the Institute of Computational and Mathematical Engineering at Stanford University. Earlier, Candès was the Ronald and Maxine Linde Professor of Applied and Computational Mathematics at the California Institute of Technology. His research interests are in computational harmonic analysis, statistics, information theory, signal processing and mathematical optimization with applications to the imaging sciences, scientific computing and inverse problems. He received his Ph.D. in statistics from Stanford University in 1998.

    Candès has received several awards including the Alan T. Waterman Award from NSF, which is the highest honor bestowed by the National Science Foundation, and which recognizes the achievements of early-career scientists. He has given over 60 plenary lectures at major international conferences, not only in mathematics and statistics but in many other areas as well including biomedical imaging and solid-state physics. He was elected to the National Academy of Sciences and to the American Academy of Arts and Sciences in 2014.

  • Robson Capasso

    Robson Capasso

    Associate Professor of Otolaryngology-Head and Neck Surgery (Sleep Surgery) at the Stanford University Medical Center

    Current Research and Scholarly InterestsClinically relevant outcomes for OSA Surgery.
    Wearables and Digital Health Technologies for Sleep.
    Innovative approaches for OSA Management.
    Innovation in Sleep and Otolaryngology

  • Jan Carette

    Jan Carette

    Associate Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsOur research focuses on the identification of host genes that play critical roles in the pathogenesis of infectious agents including viruses. We use haploid genetic screens in human cells as an efficient approach to perform loss-of-function studies. Besides obtaining fundamental insights on how viruses hijack cellular processes and on host defense mechanisms, it may also facilitate the development of new therapeutic strategies.

  • Victor Carrion

    Victor Carrion

    John A. Turner Endowed Professor for Child and Adolescent Psychiatry

    Current Research and Scholarly InterestsExamines the interplay between brain development and stress vulnerability via a multi-method approach that includes psychophysiology, neuroimaging, neuroendocrinology and phenomenology. Treatment development that focuses on individual and community-based interventions for stress related conditions in children and adolescents that experience traumatic stress.

  • Dennis R Carter

    Dennis R Carter

    Professor of Mechanical Engineering, Emeritus

    Current Research and Scholarly InterestsProfessor Carter studies the influence of mechanical loading upon the growth, development, regeneration, and aging of skeletal tissues. Basic information from such studies is used to understand skeletal diseases and treatments. He has served as President of the Orthopaedic Research Society and is a Fellow of the American Institute for Medical and Biological Engineering.

  • Lynette Cegelski

    Lynette Cegelski

    Associate Professor of Chemistry and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsOur research program integrates chemistry, biology, and physics to investigate the assembly and function of macromolecular and whole-cell systems. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We are inspired by the need for new and unconventional approaches to solve these outstanding problems and to drive the discovery of new therapeutics for human disease.

    Our approach is different from the more conventional protein-structure determinations of structural biology. We employ biophysical and biochemical tools, and are designing new strategies using solid-state NMR spectroscopy to examine assemblies such as amyloid fibers, bacterial cell walls, whole cells, and biofilms. We would like to understand at a molecular and atomic level how bacteria self-assemble extracellular structures, including functional amyloid fibers termed curli, and how bacteria use such building blocks to construct organized biofilm architectures. We also employ a chemical genetics approach to recruit small molecules as tools to interrupt and interrogate the temporal and spatial events during assembly processes and to develop new strategies to prevent and treat infectious diseases. Overall, our approach is multi-pronged and provides training opportunities for students interested in research at the chemistry-biology interface.

  • Chris Chafe

    Chris Chafe

    Duca Family Professor

    BioChris Chafe is a composer, improvisor, and cellist, developing much of his music alongside computer-based research. He is Director of Stanford University's Center for Computer Research in Music and Acoustics (CCRMA). In 2019, he was International Visiting Research Scholar at the Peter Wall Institute for Advanced Studies The University of British Columbia, Visiting Professor at the Politecnico di Torino, and Edgard-Varèse Guest Professor at the Technical University of Berlin. At IRCAM (Paris) and The Banff Centre (Alberta), he has pursued methods for digital synthesis, music performance and real-time internet collaboration. CCRMA's jacktrip project involves live concertizing with musicians the world over. Online collaboration software and research into latency factors continue to evolve. An active performer either on the net or physically present, his music reaches audiences in sometimes novel venues. An early network project was a simultaneous five-country concert was hosted at the United Nations in 2009. Chafe’s works include gallery and museum music installations which are now into their second decade with “musifications” resulting from collaborations with artists, scientists and MD’s. Recent work includes the Earth Symphony, the Brain Stethoscope project (Gnosisong), PolarTide for the 2013 Venice Biennale, Tomato Quintet for the transLife:media Festival at the National Art Museum of China and Sun Shot played by the horns of large ships in the port of St. Johns, Newfoundland.

  • Page Chamberlain

    Page Chamberlain

    Professor of Geological Sciences

    Current Research and Scholarly InterestsResearch
    I use stable and radiogenic isotopes to understand Earth system history. These studies examine the link between climate, tectonics, biological, and surface processes. Projects include: 1) examining the terrestrial climate history of the Earth focusing on periods of time in the past that had CO 2-levels similar to the present and to future projections; and 2) addressing how the chemical weathering of the Earth's crust affects both the long- and short-term carbon cycle. Field areas for these studies are in the Cascades, Rocky Mountains, Sierra Nevada, the European Alps, Tibet and the Himalaya and the Southern Alps of New Zealand.

    International Collaborations
    Much of the research that I do has an international component. Specifically, I have collaborations with: 1) the Senckenberg Biodiversity and Climate Research Center in Frankfurt Germany as a Humboldt Fellow and 2) the Chinese University of Geosciences in Bejiing China where I collaborate with Professor Yuan Gao.

    Teaching
    I teach courses at the undergraduate and graduate level in isotope biogeochemistry, Earth system history, and the relationship between climate, surface processes and tectonics.

    Professional Activities
    Editor American Journal of Science; Co-Director Stanford Stable Isotope Biogeochemistry Laboratory (present);Chair, Department of Geological and Environmental Sciences (2004-07); Co-Director Stanford/USGS SHRIMP Ion microprobe facility (2001-04)

  • Daniel Chang

    Daniel Chang

    Sue and Bob McCollum Professor

    Current Research and Scholarly InterestsI specialize in the treatment of gastrointestinal malignancies. I am interested in developing stereotactic body radiotherapy for tumors of the liver, both primary and metastatic. I am interested in developing functional imaging as a means of determining treatment response with radiation. I am also interested in developing image-guided radiotherapy to improve radiation delivery for GI cancers to reduce toxicity and improve disease outcome.

  • Fu-Kuo Chang

    Fu-Kuo Chang

    Professor of Aeronautics and Astronautics

    BioProfessor Chang's primary research interest is in the areas of multi-functional materials and intelligent structures with particular emphases on structural health monitoring, intelligent self-sensing diagnostics, and multifunctional energy storage composites for transportation vehicles as well as safety-critical assets and medical devices. His specialties include embedded sensors and stretchable sensor networks with built-in self-diagnostics, integrated diagnostics and prognostics, damage tolerance and failure analysis for composite materials, and advanced multi-physics computational methods for multi-functional structures. Most of his work involves system integration and multi-disciplinary engineering in structural mechanics, electrical engineering, signal processing, and multi-scale fabrication of materials. His recent research topics include: Multifunctional energy storage composites, Integrated health management for aircraft structures, bio-inspired intelligent sensory materials for fly-by-feel autonomous vehicles, active sensing diagnostics for composite structures, self-diagnostics for high-temperature materials, etc.

  • Howard Y. Chang, MD, PhD

    Howard Y. Chang, MD, PhD

    Virginia and D. K. Ludwig Professor of Cancer Genomics and of Genetics

    Current Research and Scholarly InterestsOur research is focused on how the activities of hundreds or even thousands of genes (gene parties) are coordinated to achieve biological meaning. We have pioneered methods to predict, dissect, and control large-scale gene regulatory programs; these methods have provided insights into human development, cancer, and aging.

  • James Chang, MD

    James Chang, MD

    Johnson and Johnson Professor of Surgery and Professor, by courtesy, of Orthopaedic Surgery at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly InterestsMy role in research is to apply novel advances in tissue engineering and microsurgery to the clinical problems of hand trauma, peripheral nerve injuries, and congenital hand problems. I am interested in developing new tissues and techniques that will allow optimal reconstruction of form and function to those patients requiring reconstructive surgery.

  • Robert Chang, MD

    Robert Chang, MD

    Associate Professor of Ophthalmology at the Stanford University Medical Center

    Current Research and Scholarly InterestsI'm interested in digital health, commercialization of new technology, and the biodesign education process. I have expertise in mobile health and clinical validation of new eye care devices.

  • Steven D. Chang, MD

    Steven D. Chang, MD

    Robert C. and Jeannette Powell Neurosciences Professor and, by courtesy, of Otolaryngology-Head and Neck Surgery and of Neurology

    Current Research and Scholarly InterestsClinical research includes studies in the treatment of cerebrovascular disorders, such as aneurysms and AVMs, as well as the use of radiosurgery to treat tumors and vascular malformations of the brain and spine.

    Dr. Chang is C0-Director of the Cyberknife Radiosurgery Program.

    Dr. Chang is also the head of the The Stanford Neuromolecular Innovation Program with the goal of developing new technologies to improve the diagnosis and treatment of patients affected by neurological conditions.

  • Ovijit Chaudhuri

    Ovijit Chaudhuri

    Assistant Professor of Mechanical Engineering

    BioOur group's research is focused at the intersection of mechanics and biology. We are interested in elucidating the underlying molecular mechanisms that give rise to the complex mechanical properties of cells, extracellular matrices, and tissues . Conversely, we are investigating how complex mechanical cues influence important biological processes such as cell division, differentiation, or cancer progression. Our approaches involve using force measurement instrumentation, such as atomic force microscopy, to exert and measure forces on materials and cells at the nanoscale, and the development of material systems for 3D cell culture that allow precise and independent manipulation of mechanical properties.

  • Bertha Chen, MD

    Bertha Chen, MD

    Professor of Obstetrics and Gynecology (Gynecology - Urogynecology) and, by courtesy, of Urology at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Chen’s research examines the molecular causes of urinary incontinence and pelvic floor dysfunction. Recognizing that urinary incontinence linked to demise of smooth muscle sphincter function, she is investigating the potential use of stem cell regeneration to restore muscle capacity.

  • James K. Chen

    James K. Chen

    Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry
    On Partial Leave from 07/01/2020 To 08/31/2020

    Current Research and Scholarly InterestsOur laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Jonathan H. Chen, MD, PhD

    Jonathan H. Chen, MD, PhD

    Assistant Professor of Medicine (Biomedical Informatics) at the Stanford University Medical Center

    Current Research and Scholarly InterestsInformatics solutions ares the only credible approach to systematically address challenges of escalating complexity in healthcare. Tapping into real-world clinical data streams like electronic medical records will reveal the community's latent knowledge in a reproducible form. Delivering this back as clinical decision support will uniquely close the loop on a continuously learning health system.

  • Lu Chen

    Lu Chen

    Professor of Neurosurgery and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsWhat distinguishes us humans from other animals is our ability to undergo complex behavior. The synapses are the structural connection between neurons that mediates the communication between neurons, which underlies our various cognitive function. My research program aims to understand the cellular and molecular mechanisms that underlie synapse function during behavior in the developing and mature brain, and how synapse function is altered during mental retardation.

  • Xiaoke Chen

    Xiaoke Chen

    Associate Professor of Biology

    Current Research and Scholarly InterestsOur goal is to understand how brain circuits mediate motivated behaviors and how maladaptive changes in these circuits cause mood disorders. To achieve this goal, we focus on studying the neural circuits for pain and addiction, as both trigger highly motivated behaviors, whereas, transitioning from acute to chronic pain or from recreational to compulsive drug use involves maladaptive changes of the underlying neuronal circuitry.

  • Alan G. Cheng

    Alan G. Cheng

    Edward C. and Amy H. Sewall Professor

    Current Research and Scholarly InterestsActive Wnt signaling maintains somatic stem cells in many organ systems. Using Wnt target genes as markers, we have characterized distinct cell populations with stem cell behavior in the inner ear, an organ thought to be terminally differentiated. Ongoing work focuses on delineating the developing significance of these putative stem/progenitor cells and their behavior after damage.

  • Zhen Cheng

    Zhen Cheng

    Associate Professor (Research) of Radiology (Molecular Imaging)

    Current Research and Scholarly InterestsTo develop novel molecular imaging probes and techniques for non-invasively early detection of cancer using multimodality imaging technologies including PET, SPECT, MRI, optical imaging, etc.

  • Thomas L. Cherpes, DVM, MD

    Thomas L. Cherpes, DVM, MD

    Assistant Professor of Comparative Medicine

    Current Research and Scholarly InterestsDirects an infectious disease laboratory that performs basic, translational, and clinical research. Laboratory has particular focus on:
    1) relationship between exogenous sex steroids on susceptibility to microbial pathogens
    2) role of Type 2 immunity in Chlamydia infection
    3) developing cellular immunotherapies to combat infectious disease and cancer

  • Mike Cherry

    Mike Cherry

    Professor (Research) of Genetics

    Current Research and Scholarly InterestsMy research involves identifying, validating and integrating scientific facts into encyclopedic databases essential for research and scientific education. Published results of scientific experimentation are a foundation of our understanding of the natural world and provide motivation for new experiments. The combination of in-depth understanding reported in the literature with computational analyses is an essential ingredient of modern biological research.

  • Emilie Cheung, MD

    Emilie Cheung, MD

    Associate Professor of Orthopaedic Surgery at the Stanford University Medical Center
    On Leave from 07/01/2020 To 08/30/2020

    Current Research and Scholarly InterestsPyrocarbon humeral head replacement
    Clinical outcome after shoulder replacement
    Clinical outcome after elbow replacement
    Clinical outcomes following complex reconstruction of the shoulder and elbow,
    Bone mineral density in the shoulder,
    3D kinematics of the shoulder girdle after arthroplasty

  • E.J. Chichilnisky

    E.J. Chichilnisky

    John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsFunctional circuitry of the retina and design of retinal prostheses

  • Yueh-hsiu Chien

    Yueh-hsiu Chien

    Professor of Microbiology & Immunology

    Current Research and Scholarly InterestsContribution of T cells to immunocompetence and autoimmunity; how the immune system clears infection, avoids autoimmunity and how infection impacts on the development of immune responses.

  • Frederick T. Chin, Ph.D.

    Frederick T. Chin, Ph.D.

    Assistant Professor (Research) of Radiology (Molecular Imaging)

    Current Research and Scholarly InterestsOur group's primary objectives are:

    1) Novel radioligand and radiotracer development.
    We will develop novel PET (Positron Emission Tomography) imaging agents with MIPS and Stanford faculty as well as other outside collaborations including academia and pharmaceutical industry. Although my personal research interests will be to discover and design of candidate probes that target molecular targets in the brain, our group focus will primarily be on cancer biology and gene therapy. In conjunction with our state-of-the-art imaging facility, promising candidates will be evaluated by PET-CT/MR imaging in small animals and primates. Successful radioligands and/or radiotracers will be extended towards future human clinical applications.

    2) Designing new radiolabeling techniques and methodologies.
    We will aim to design new radiolabeling techniques and methodologies that may have utility for future radiopharmaceutical development in our lab and the general radiochemistry community.

    3) Radiochemistry production of routine clinical tracers.
    Since we also have many interests with many Stanford faculty and outside collaborators, our efforts will also include the routine radiochemistry production of many existing radiotracers for human and non-human use. Our routine clinical tracers will be synthesized in custom-made or commercial synthetic modules (i.e. GE TRACERlab modules) housed in lead-shielded cells and be distributed manually or automatically (i.e. Comecer Dorothea) to our imagers.

  • Gheorghe Chistol

    Gheorghe Chistol

    Assistant Professor of Chemical and Systems Biology

    Current Research and Scholarly InterestsResearch in my laboratory is aimed at understanding how eukaryotes replicate their DNA despite numerous challenges (collectively known as replication stress), and more generally – how eukaryotic cells safeguard genome integrity. Specifically, we are investigating: (i) mechanisms that regulate the activity of the replicative helicase during replication stress, (ii) mechanisms that control the inheritance of epigenetic information during replication, and (iii) mechanisms of ubiquitin-mediated regulation of genome maintenance. We utilize single-molecule microscopy to directly image fluorescently-labeled replication factors and track them in real time in Xenopus egg extracts. I developed this system as a postdoctoral fellow, and used it to monitor how the eukaryotic replicative helicase copes with DNA damage. We plan to further extend the capabilities of this platform to directly visualize other essential replication factors, nucleosomes, and regulatory post-translational modifications like ubiquitin chains. By elucidating molecular mechanisms responsible for maintaining genome stability, we aim to better understand the link between genome instability and cancer, and how these mechanisms can be harnessed to improve disease treatment.

  • Bill Chiu

    Bill Chiu

    Associate Professor of Surgery (Pediatric Surgery) at the Stanford University Medical Center

    BioDr. Chiu obtained his B.S. degree in Biological Sciences and graduated with Honors from Stanford University. After graduating, he received his Medical Degree at Northwestern University Feinberg School of Medicine, where he remained for his internship and General Surgery residency training. Dr. Chiu completed his Pediatric Surgery training at The Children’s Hospital of Philadelphia. He is an Associate Professor at Stanford University School of Medicine where he has an active research program studying innovative approaches to treat patients with neuroblastoma.

  • Wah Chiu

    Wah Chiu

    Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.

  • Danny Hung-Chieh Chou

    Danny Hung-Chieh Chou

    Assistant Professor of Pediatrics (Endocrinology)

    Current Research and Scholarly InterestsOur research program integrates concepts of chemical biology, protein engineering and structure biology to design new therapeutic leads and generate probes to study biological processes. A key focus of our lab is insulin, an essential hormone in our body to reduce blood glucose levels. We generate synthetic libraries of insulin analogs to select for chemical probes, and investigate natural insulin molecules (e.g. from the venom of fish-hunting cone snails!) to develop novel therapeutic candidates. We are especially interested in using chemical and enzymatic synthesis to create novel chemical entities with enhanced properties, and leverage the strong expertise of our collaborators to apply our skill sets in the fields of cancer biology, immunology and pain research. Our ultimate goal is to translate our discovery into therapeutic interventions in human diseases.

  • Constance Chu, MD

    Constance Chu, MD

    Professor of Orthopaedic Surgery (Sports Medicine) at the Palo Alto Veterans Affairs Health Care System

    BioDr. Constance R. Chu is Professor and Vice Chair Research, in the Department of Orthopedic Surgery at Stanford University. She is also Director of the Joint Preservation Center and Chief of Sports Medicine at the VA Palo Alto. Previously, she was the Albert Ferguson Endowed Chair and Professor of Orthopaedic Surgery at the University of Pittsburgh. She is a clinician-scientist who is both principal investigator of several projects funded by the National Institutes of Health and who has been recognized as a Castle-Connelly/US News and World Report “Top Doctor” in Orthopedic Surgery as well as on Becker’s list of Top Knee Surgeons in the United States. Her clinical practice focuses on the knee: primarily restoration and reconstruction of the ACL, menisci and cartilage. She graduated from the U.S. Military Academy at West Point and earned her medical degree from Harvard Medical School.

    As Director of the multi-disciplinary Joint Preservation Center structured to seamlessly integrate the latest advances in biologics, mechanics, and imaging with comprehensive patient centered musculoskeletal and orthopedic care, Dr. Chu aims to develop a new model for health care delivery, research and education with an emphasis on health promotion and prevention. Cornerstones of this program include teamwork and a focus on personalized medicine. A central goal is to transform the clinical approach to osteoarthritis from palliation to prevention. In addition to optimizing clinical operations, outstanding research is critical to developing more effective new treatments. Towards this end, Dr. Chu is leading innovative translational research from bench to bedside in three main areas: quantitative imaging and biomarker development for early diagnosis and staging of joint and cartilage injury and degeneration; cartilage tissue engineering and stem cell based cartilage repair; and molecular and biological therapies for joint restoration and joint rejuvenation. Her research efforts have led to more than 30 professional awards and honors to include a Kappa Delta Award, considered to be the highest research honor in Orthopedic Surgery.

    Dr. Chu also regularly holds leadership and committee positions in major professional organizations such as the American Association of Orthopedic Surgeons (AAOS) and the American Orthopedic Association (AOA). In her subspecialty of Orthopedic Sports Medicine, she is a past President of the Forum Sports Focus Group, a member of the Herodicus Society of leaders in Sports Medicine, and immediate past Chair of the American Orthopedic Society for Sports Medicine (AOSSM) Research Council. She is alumnus of the AOA American, British, Canadian (ABC) and the AOSSM Traveling Fellowships.

  • Gilbert Chu

    Gilbert Chu

    Professor of Medicine (Oncology) and of Biochemistry

    Current Research and Scholarly InterestsAfter shuttering the wet lab, we have focused on: a point-of-care device to measure blood ammonia and prevent brain damage; a human protein complex that juxtaposes and joins DNA ends for repair and V(D)J recombination; and strategies for teaching students and for reducing selection bias in educational programs.

  • Lawrence Chu, MD, MS

    Lawrence Chu, MD, MS

    Professor of Anesthesiology, Perioperative and Pain Medicine at the Stanford University Medical Center

    Current Research and Scholarly InterestsI have two lines of research, one involving educational informatics and use of technology in postgraduate medical education and another involving NIH-funded work in patient-oriented clinical research regarding opioid use and physiologic responses associated with acute and chronic exposure in humans.

    For a full description of my educational informatics work, please see my website aim.stanford.edu.

    My clinical research focuses on the study opiate-induced hyperalgesia in patients suffering from chronic pain.

    I am currently conducting an NIH-funded five year double-blinded randomized controlled clinical study (NIGMS award 1K23GM071400-01) that prospectively examines the following hypotheses: 1) pain patients on chronic opioid therapy develop dose-dependent tolerance and/or hyperalgesia to these medications over time, 2) opiate-induced tolerance and hyperalgesia develop differently with respect to various types of pain, 3) opioid-induced hyperalgesia occurs independently of withdrawal phenomena, and 4) opiate-induced tolerance and hyperalgesia develop differently based on gender and/or ethnicity.

    The study is the first quantitative and prospective examination of tolerance and hyperalgesia in pain patients and may have important implications for the rational use of opioids in the treatment of chronic pain.

  • Steven Chu

    Steven Chu

    William R. Kenan Jr. Professor and Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsSynthesis, functionalization and applications of nanoparticle bioprobes for molecular cellular in vivo imaging in biology and biomedicine. Linear and nonlinear difference frequency mixing ultrasound imaging. Lithium metal-sulfur batteries, new approaches to electrochemical splitting of water. CO2 reduction, lithium extraction from salt water

  • Katrin Chua

    Katrin Chua

    Associate Professor of Medicine (Endocrinology, Gerontology and Metabolism)

    Current Research and Scholarly InterestsOur lab is interested in understanding molecular processes that underlie aging and age-associated pathologies in mammals. We focus on a family of genes, the SIRTs, which regulate stress resistance and lifespan in lower organisms such as yeast, worms, and flies. In mammals, we recently uncovered a number of ways in which SIRT factors may contribute to cellular and organismal aging by regulating resistance to various forms of stress. We have now begun to characterize the molecular mechanisms by which these SIRT factors function. In particular, we are interested in how SIRT factors regulate chromatin, the molecular structure in which the DNA of mammalian genomes is packaged, and how such functions may link genome maintenance to stress resistance and aging.

  • Benjamin I. Chung

    Benjamin I. Chung

    Associate Professor of Urology at the Stanford University Medical Center

    Current Research and Scholarly InterestsRenal cell carcinoma and prostate cancer outcomes research and epidemiology.

  • Karlene Cimprich

    Karlene Cimprich

    Professor of Chemical and Systems Biology

    Current Research and Scholarly InterestsGenomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.

  • Thomas Clandinin

    Thomas Clandinin

    Shooter Family Professor

    Current Research and Scholarly InterestsThe Clandinin lab focuses on understanding how neuronal circuits assemble and function to perform specific computations and guide behavior. Taking advantage of a rich armamentarium of genetic tools available in the fruit fly, combined with imaging, physiology and analytical techniques drawn from systems neuroscience, we examine a variety of visual circuits.