Wu Tsai Neurosciences Institute
Showing 141-160 of 597 Results
-
Rongxin Fang
Assistant Professor of Neurosurgery and, by courtesy, of Genetics
BioRongxin received his Ph.D. in Bioinformatics and Systems Biology at UC San Diego, where he was advised by Bing Ren (2015-2019). During this time, he developed high-throughput genomic technologies and computational tools to map the structure and activity of the mammalian genome at a large scale with single-cell resolution. He then applied these approaches to understand how cis-regulatory elements such as enhancers in the genome control gene expression and how this process can give rise to the distinct gene expression programs that underlie the cellular diversity in the mammalian brain. As an HHMI-Damon Runyon Postdoctoral Fellow in the laboratory of Xiaowei Zhuang at Harvard University (2019-2024), he developed and applied genome-scale and volumetric 3D transcriptome imaging methods to map the molecular and cellular architecture of the mammalian brain during evolution and aging. He also participated in the collaboration with Adam Cohen and Catherine Dulac to combine transcriptome imaging with functional neuronal recording to identify neuronal populations in the animal brain that underlie specific bran functions.
-
C. Garrison Fathman
Professor of Medicine (Immunology and Rheumatology), Emeritus
Current Research and Scholarly InterestsMy lab of molecular and cellular immunology is interested in research in the general field of T cell activation and autoimmunity. We have identified and characterized a gene (GRAIL) that seems to control regulatory T cell (Treg) responsiveness by inhibiting the Treg IL-2 receptor desensitization. We have characterized a gene (Deaf1) that plays a major role in peripheral tolerance in T1D. Using PBC gene expression, we have provisionally identified a signature of risk and progression in T1D.
-
Vivian Feig
Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioThe Feig lab aims to develop low-cost, noninvasive, and widely-accessible medical technologies that integrate seamlessly with the human body. We accomplish this by developing functional materials and devices with dynamic mechanical properties, leveraging chemistry and physics insights to engineer novel systems at multiple length scales. In pursuit of our goals, we maintain a strong emphasis on integrity and diversity, while nurturing the intellectual curiosity and holistic growth of our team members as researchers, communicators, and leaders.
-
Heidi M. Feldman
Ballinger-Swindells Endowed Professor of Developmental and Behavioral Pediatrics
On Partial Leave from 03/01/2025 To 05/04/2025Current Research and Scholarly InterestsMy current research program focuses on infants born preterm, before 32 weeks gestation from two language environments: English and Spanish. The study considers how neurobiological factors, specifically properties of the white matter circuits in the brain, interact with social, psychological, and economic factors to predict language processing efficiency at 18 months of age.
-
Marcus Feldman
Burnet C. and Mildred Finley Wohlford Professor
Current Research and Scholarly InterestsHuman genetic and cultural evolution, mathematical biology, demography of China
-
Liang Feng
Associate Professor of Molecular and Cellular Physiology and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsWe are interested in the structure, dynamics and function of eukaryotic transport proteins mediating ions and major nutrients crossing the membrane, the kinetics and regulation of transport processes, the catalytic mechanism of membrane embedded enzymes and the development of small molecule modulators based on the structure and function of membrane proteins.
-
Russell D. Fernald
Benjamin Scott Crocker Professor of Human Biology, Emeritus
Current Research and Scholarly InterestsIn the course of evolution,two of the strongest selective forces in nature,light and sex, have left their mark on living organisms. I am interested in how the development and function of the nervous system reflects these events. We use the reproductive system to understand how social behavior influences the main system of reproductive action controlled by a collection of cells in the brain containing gonodotropin releasing hormone(GnRH)
-
Juan Carlos Fernandez-Miranda
Professor of Neurosurgery and, by courtesy, of Otolaryngology - Head & Neck Surgery (OHNS)
BioDr. Juan Fernandez-Miranda is Professor of Neurosurgery and Surgical Director of the Stanford Brain Tumor, Skull Base, and Pituitary Centers. He is internationally renowned for his expertise in minimally invasive brain surgery, endoscopic skull base and pituitary surgery, open skull base surgery, and complex brain tumor surgery. He has performed nearly 3,000 cranial operations including over 1,500 endoscopic endonasal operations for pituitary tumors and other skull base lesions. He is highly regarded for his innovative contributions to the development and refinement of endoscopic endonasal skull base surgery, for his ability to select the most effective and less invasive approach to each individual patient, and for his precise knowledge of the intricate anatomy of the white matter tracts required to maximize resection and minimize morbidity on high and low grade glioma patients. He has been recently ranked by Expertscape as World-Expert (top 0.05%) on Skull Base Surgery and #1 Neurosurgeon Expert on Skull Base Tumors (pituitary adenomas, meningiomas, craniopharyngiomas, chordomas, chondrosarcomas, schwannomas and esthesioneuroblastomas) on the US Pacific Region. He is co-founder and vice-president of the International Rhoton Society and executive member of the Board of Directors of the The Neurosurgical Atlas, the largest nonprofit organization for neurosurgical education and research in the world.
Dr. Fernandez-Miranda completed neurosurgery residency at La Paz University Hospital in Madrid, Spain. Upon completion of his residency, he was awarded the Sanitas Prize to the best medical postgraduate trainee in the country. From 2005 to 2007, he underwent fellowship training in microsurgical neuroanatomy at the University of Florida under legendary neurosurgeon Albert L. Rhoton, Jr. From 2007 to 2010 he continued subspecialty clinical training in cerebrovascular surgery at the University of Virginia, and endoscopic endonasal and open skull base surgery at University of Pittsburgh Medical Center (UPMC). During his 10-year tenure at UPMC, he pioneered endoscopic endonasal approaches to highly complex pituitary and skull base tumors, developed a world-class complex brain surgery program, and led a premier training and research program on surgical neuroanatomy and skull base surgery.
In 2018, he was recruited to bring to Stanford his unique technical expertise and to collaborate with world-renowned Stanford colleagues across multiple disciplines, leading the establishment of one of the most preeminent centers worldwide for comprehensive treatment of complex lesions in the brain, skull base, and pituitary regions. His top priority is to provide gentle, accurate, and safe surgery, in a team-based and compassionate approach to patient care. -
Katherine Ferrara
Professor of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.
-
James Ferrell
Professor of Chemical and Systems Biology and of Biochemistry
Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.
-
Andrew Fire
George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics
Current Research and Scholarly InterestsWhile chromosomal inheritance provides cells with one means for keeping and transmitting genetic information, numerous other mechanisms have (and remain to be) discovered. We study novel cellular mechanisms that enforce genetic constancy and permit genetic change. Underlying our studies are questions of the diversity of inheritance mechanisms, how cells distinguish such mechanisms as "wanted" versus "unwanted", and of the consequences and applications of such mechanisms in health and disease.
-
Daniel Fisher
Marjorie Mhoon Fair Professor
Current Research and Scholarly InterestsEvolutionary & ecological dynamics & diversity, microbial, expt'l, & cancer
-
Paul Graham Fisher, MD
Beirne Family Professor of Pediatric Neuro-Oncology, Professor of Pediatrics and, by courtesy, of Neurosurgery and of Epidemiology and Population Health
On Partial Leave from 07/15/2024 To 07/13/2025Current Research and Scholarly InterestsClinical neuro-oncology: My research explores the epidemiology, natural history, and disease patterns of brain tumors and other cancers in childhood, as well as prospective clinical trials for treating these neoplasms. Research interests also include neurologic effects of cancer and its therapies.
-
Philip Andrew Fisher
Diana Chen Professor of Early Childhood Learning and Professor, by courtesy, of Pediatrics
BioDr. Philip Fisher is the Diana Chen Professor of Early Childhood Learning in the Graduate School of Education at Stanford. His research, which has been continuously funded by the National Institutes of Health since 1999, focuses on developing and evaluating scalable early childhood interventions in communities, and on translating scientific knowledge regarding healthy development under conditions of adversity for use in social policy and programs. He is particularly interested in the effects of early stressful experiences on children's neurobiological and psychological development, and in prevention and treatment programs for improving children's functioning in areas such as relationships with caregivers and peers, social-emotional development, and academic achievement. He is currently the lead investigator in the ongoing RAPID-EC project, a national survey on the well-being of households with young children during the COVID-19 pandemic. Dr. Fisher is also interested in the brain's plasticity in the context of therapeutic interventions. He is the developer of a number of widely implemented evidence-based interventions for supporting healthy child development in the context of social and economic adversity, including Treatment Foster Care Oregon for Preschoolers (TFCO-P), Kids in Transition to School (KITS), and Filming Interactions to Nurture Development (FIND). He has published over 200 scientific papers in peer reviewed journals. He is the recipient of the 2012 Society for Prevention Research Translational Science Award, and a 2019 Fellow of the American Psychological Society.
-
Robert Fisher, MD, PhD
The Maslah Saul, MD, Professor and Professor, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsDr. Fisher is interested in clincal, laboratory and translational aspects of epilepsy research. Prior work has included: electrical deep brain stimulation for epilepsy, studied in laboratory models and clinical trials; drug delivery to a seizure focus; mechanisms of absence epilepsy studied with in vitro slices of brain thalamus; hyperthermic seizures; diagnosis and treatment of non-epileptic seizures, the post-ictal state; driving and epilepsy; new antiepileptic drugs; surgery for epilepsy.
-
Matthew Fitzgerald, PhD
Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsMy research encompasses several translational projects. One focus is to modify the routine audiologic test battery such that it places equal weight on hearing acuity and hearing function. This work includes measures of speech in noise, or electrophysiologic responses such as the FFR. I also explore tools to better assess and maximize performance in users of hearing aids and cochlear implants. Finally, I am also investigating the benefits of telemedicine, and new treatments for tinnitus.
-
Pamela Flood
Adjunct Clinical Professor, Anesthesiology, Perioperative and Pain Medicine
BioDr. Flood is a Professor at Stanford University who is fellowship trained in Pain Medicine and Obstetric Anesthesiology. She specializes in the treatment of chronic pelvic pain and multiple aspects of women's health including the prevention of chronic pain after childbirth. Research interests include the role of multimodal treatment in chronic pain conditions and prevention of persistent opioid use. Her research has spanned from detailed pharmacodynamic analysis, clinical trials to population health.
-
Sean Follmer
Associate Professor of Mechanical Engineering and, by courtesy, of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsHuman Computer Interaction, Haptics, Robotics, Human Centered Design
-
Sai Folmsbee, MD, PhD
Clinical Assistant Professor, Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsMy current research interest is the intersection of psychiatry and neuroimmunology. I am currently collaborating with Stanford Neuroimmunology in a retrospective analysis of patient data to determine the relationship between psychaitric medications and clinical outcomes in hospitalized patients with mutliple sclerosis, autoimmune encephalitis, and neuromyelitis optica.
-
Polly Fordyce
Associate Professor of Bioengineering and of Genetics
Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.